IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18034-2.html
   My bibliography  Save this article

Molecular layer interneurons in the cerebellum encode for valence in associative learning

Author

Listed:
  • Ming Ma

    (University of Colorado Anschutz Medical Campus
    University of Colorado Anschutz Medical Campus)

  • Gregory L. Futia

    (University of Colorado Anschutz Medical Campus)

  • Fabio M. Simoes de Souza

    (University of Colorado Anschutz Medical Campus
    Federal University of ABC)

  • Baris N. Ozbay

    (Intelligent Imaging Innovations)

  • Isabel Llano

    (Université Paris Descartes)

  • Emily A. Gibson

    (University of Colorado Anschutz Medical Campus
    University of Colorado Anschutz Medical Campus)

  • Diego Restrepo

    (University of Colorado Anschutz Medical Campus
    University of Colorado Anschutz Medical Campus)

Abstract

The cerebellum plays a crucial role in sensorimotor and associative learning. However, the contribution of molecular layer interneurons (MLIs) to these processes is not well understood. We used two-photon microscopy to study the role of ensembles of cerebellar MLIs in a go-no go task where mice obtain a sugar water reward if they lick a spout in the presence of the rewarded odorant and avoid a timeout when they refrain from licking for the unrewarded odorant. In naive animals the MLI responses did not differ between the odorants. With learning, the rewarded odorant elicited a large increase in MLI calcium responses, and the identity of the odorant could be decoded from the differential response. Importantly, MLIs switched odorant responses when the valence of the stimuli was reversed. Finally, mice took a longer time to refrain from licking in the presence of the unrewarded odorant and had difficulty becoming proficient when MLIs were inhibited by chemogenetic intervention. Our findings support a role for MLIs in learning valence in the cerebellum.

Suggested Citation

  • Ming Ma & Gregory L. Futia & Fabio M. Simoes de Souza & Baris N. Ozbay & Isabel Llano & Emily A. Gibson & Diego Restrepo, 2020. "Molecular layer interneurons in the cerebellum encode for valence in associative learning," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18034-2
    DOI: 10.1038/s41467-020-18034-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18034-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18034-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naveen Sendhilnathan & Anna Ipata & Michael E. Goldberg, 2021. "Mid-lateral cerebellar complex spikes encode multiple independent reward-related signals during reinforcement learning," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Naveen Sendhilnathan & Andreea C. Bostan & Peter L. Strick & Michael E. Goldberg, 2024. "A cerebro-cerebellar network for learning visuomotor associations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Owen Y. Chao & Salil Saurav Pathak & Hao Zhang & George J. Augustine & Jason M. Christie & Chikako Kikuchi & Hiroki Taniguchi & Yi-Mei Yang, 2023. "Social memory deficit caused by dysregulation of the cerebellar vermis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18034-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.