Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-020-17499-5
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xinyue Wang & Yuanjun Chen & Feng Li & Rui Kai Miao & Jianan Erick Huang & Zilin Zhao & Xiao-Yan Li & Roham Dorakhan & Senlin Chu & Jinhong Wu & Sixing Zheng & Weiyan Ni & Dongha Kim & Sungjin Park & , 2024. "Site-selective protonation enables efficient carbon monoxide electroreduction to acetate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Chen, Zhangsen & Zhang, Gaixia & Chen, Hangrong & Prakash, Jai & Zheng, Yi & Sun, Shuhui, 2022. "Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Jing Li & Haocheng Xiong & Xiaozhi Liu & Donghuan Wu & Dong Su & Bingjun Xu & Qi Lu, 2023. "Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Di Wang & Hyun Dong Jung & Shikai Liu & Jiayi Chen & Haozhou Yang & Qian He & Shibo Xi & Seoin Back & Lei Wang, 2024. "Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Manjeet Chhetri & Mingyu Wan & Zehua Jin & John Yeager & Case Sandor & Conner Rapp & Hui Wang & Sungsik Lee & Cameron J. Bodenschatz & Michael J. Zachman & Fanglin Che & Ming Yang, 2023. "Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Zhibo Yao & Hao Cheng & Yifei Xu & Xinyu Zhan & Song Hong & Xinyi Tan & Tai-Sing Wu & Pei Xiong & Yun-Liang Soo & Molly Meng-Jung Li & Leiduan Hao & Liang Xu & Alex W. Robertson & Bingjun Xu & Ming Ya, 2024. "Hydrogen radical-boosted electrocatalytic CO2 reduction using Ni-partnered heteroatomic pairs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17499-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.