IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17408-w.html
   My bibliography  Save this article

Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution

Author

Listed:
  • Nina Dombrowski

    (NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University)

  • Tom A. Williams

    (University of Bristol)

  • Jiarui Sun

    (Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland)

  • Benjamin J. Woodcroft

    (Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland)

  • Jun-Hoe Lee

    (Science for Life Laboratory, Uppsala University)

  • Bui Quang Minh

    (Australian National University)

  • Christian Rinke

    (Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland)

  • Anja Spang

    (NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University
    Science for Life Laboratory, Uppsala University)

Abstract

The recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life’s evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (Candidatus Undinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, likely depend on partner organisms for the acquisition of certain metabolites. Our phylogenomic analyses robustly place Undinarchaeota as an independent lineage between two highly supported ‘DPANN’ clans. Further, our analyses suggest that DPANN have exchanged core genes with their hosts, adding to the difficulty of placing DPANN in the tree of life. This pattern can be sufficiently dominant to allow identifying known symbiont-host clades based on routes of gene transfer. Together, our work provides insights into the origins and evolution of DPANN and their hosts.

Suggested Citation

  • Nina Dombrowski & Tom A. Williams & Jiarui Sun & Benjamin J. Woodcroft & Jun-Hoe Lee & Bui Quang Minh & Christian Rinke & Anja Spang, 2020. "Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17408-w
    DOI: 10.1038/s41467-020-17408-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17408-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17408-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tara A. Mahendrarajah & Edmund R. R. Moody & Dominik Schrempf & Lénárd L. Szánthó & Nina Dombrowski & Adrián A. Davín & Davide Pisani & Philip C. J. Donoghue & Gergely J. Szöllősi & Tom A. Williams & , 2023. "ATP synthase evolution on a cross-braced dated tree of life," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Su Ding & Joshua N. Hamm & Nicole J. Bale & Jaap S. Sinninghe Damsté & Anja Spang, 2024. "Selective lipid recruitment by an archaeal DPANN symbiont from its host," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Zhongyi Lu & Runyue Xia & Siyu Zhang & Jie Pan & Yang Liu & Yuri I. Wolf & Eugene V. Koonin & Meng Li, 2024. "Evolution of optimal growth temperature in Asgard archaea inferred from the temperature dependence of GDP binding to EF-1A," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Luis E. Valentin-Alvarado & Kathryn E. Appler & Valerie Anda & Marie C. Schoelmerich & Jacob West-Roberts & Veronika Kivenson & Alexander Crits-Christoph & Lynn Ly & Rohan Sachdeva & Chris Greening & , 2024. "Asgard archaea modulate potential methanogenesis substrates in wetland soil," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Susanne Krause & Sabrina Gfrerer & Andriko Kügelgen & Carsten Reuse & Nina Dombrowski & Laura Villanueva & Boyke Bunk & Cathrin Spröer & Thomas R. Neu & Ute Kuhlicke & Kerstin Schmidt-Hohagen & Karste, 2022. "The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Zhiguang Qiu & Li Yuan & Chun-Ang Lian & Bin Lin & Jie Chen & Rong Mu & Xuejiao Qiao & Liyu Zhang & Zheng Xu & Lu Fan & Yunzeng Zhang & Shanquan Wang & Junyi Li & Huiluo Cao & Bing Li & Baowei Chen & , 2024. "BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Joshua N. Hamm & Yan Liao & Andriko Kügelgen & Nina Dombrowski & Evan Landers & Christopher Brownlee & Emma M. V. Johansson & Renee M. Whan & Matthew A. B. Baker & Buzz Baum & Tanmay A. M. Bharat & Ia, 2024. "The parasitic lifestyle of an archaeal symbiont," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Zongzhi Wu & Tang Liu & Qian Chen & Tianyi Chen & Jinyun Hu & Liyu Sun & Bingxue Wang & Wenpeng Li & Jinren Ni, 2024. "Unveiling the unknown viral world in groundwater," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17408-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.