IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17301-6.html
   My bibliography  Save this article

A high performance wearable strain sensor with advanced thermal management for motion monitoring

Author

Listed:
  • Cenxiao Tan

    (Qingdao University)

  • Zhigang Dong

    (Qingdao University)

  • Yehua Li

    (Fudan University)

  • Haiguang Zhao

    (Qingdao University)

  • Xingyi Huang

    (Shanghai Jiao Tong University)

  • Zhaocai Zhou

    (Fudan University)

  • Jin-Wu Jiang

    (Shanghai University)

  • Yun-Ze Long

    (Qingdao University)

  • Pingkai Jiang

    (Shanghai Jiao Tong University)

  • Tong-Yi Zhang

    (Shanghai University)

  • Bin Sun

    (Qingdao University)

Abstract

Resistance change under mechanical stimuli arouses mass operational heat, damaging the performance, lifetime, and reliability of stretchable electronic devices, therefore rapid thermal heat dissipating is necessary. Here we report a stretchable strain sensor with outstanding thermal management. Besides a high stretchability and sensitivity testified by human motion monitoring, as well as long-term durability, an enhanced thermal conductivity from the casted thermoplastic polyurethane-boron nitride nanosheets layer helps rapid heat transmission to the environments, while the porous electrospun fibrous thermoplastic polyurethane membrane leads to thermal insulation. A 32% drop of the real time saturated temperature is achieved. For the first time we in-situ investigated the dynamic operational temperature fluctuation of stretchable electronics under repeating stretching-releasing processes. Finally, cytotoxicity test confirms that the nanofillers are tightly restricted in the nanocomposites, making it harmless to human health. All the results prove it an excellent candidate for the next-generation of wearable devices.

Suggested Citation

  • Cenxiao Tan & Zhigang Dong & Yehua Li & Haiguang Zhao & Xingyi Huang & Zhaocai Zhou & Jin-Wu Jiang & Yun-Ze Long & Pingkai Jiang & Tong-Yi Zhang & Bin Sun, 2020. "A high performance wearable strain sensor with advanced thermal management for motion monitoring," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17301-6
    DOI: 10.1038/s41467-020-17301-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17301-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17301-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Yang & Haonan Wang & Jilie Kong & Xueen Fang, 2024. "Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Shuya Zhu & Dingshun Yan & Yong Zhang & Liuliu Han & Dierk Raabe & Zhiming Li, 2024. "Strong and ductile Resinvar alloys with temperature- and time-independent resistivity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Paul Smith & Jiayue Hu & Anthony Griffin & Mark Robertson & Alejandro Güillen Obando & Ethan Bounds & Carmen B. Dunn & Changhuai Ye & Ling Liu & Zhe Qiang, 2024. "Accurate additive manufacturing of lightweight and elastic carbons using plastic precursors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Wing Chung Liu & Vanessa Hui Yin Chou & Rohit Pratyush Behera & Hortense Le Ferrand, 2022. "Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17301-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.