IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17163-y.html
   My bibliography  Save this article

Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes

Author

Listed:
  • Keisuke Mochida

    (School of Life Science and Technology, Tokyo Institute of Technology)

  • Akinori Yamasaki

    (Institute of Microbial Chemistry (BIKAKEN)
    Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology)

  • Kazuaki Matoba

    (Institute of Microbial Chemistry (BIKAKEN))

  • Hiromi Kirisako

    (School of Life Science and Technology, Tokyo Institute of Technology)

  • Nobuo N. Noda

    (Institute of Microbial Chemistry (BIKAKEN))

  • Hitoshi Nakatogawa

    (School of Life Science and Technology, Tokyo Institute of Technology)

Abstract

The endoplasmic reticulum (ER) is selectively degraded by autophagy (ER-phagy) through proteins called ER-phagy receptors. In Saccharomyces cerevisiae, Atg40 acts as an ER-phagy receptor to sequester ER fragments into autophagosomes by binding Atg8 on forming autophagosomal membranes. During ER-phagy, parts of the ER are morphologically rearranged, fragmented, and loaded into autophagosomes, but the mechanism remains poorly understood. Here we find that Atg40 molecules assemble in the ER membrane concurrently with autophagosome formation via multivalent interaction with Atg8. Atg8-mediated super-assembly of Atg40 generates highly-curved ER regions, depending on its reticulon-like domain, and supports packing of these regions into autophagosomes. Moreover, tight binding of Atg40 to Atg8 is achieved by a short helix C-terminal to the Atg8-family interacting motif, and this feature is also observed for mammalian ER-phagy receptors. Thus, this study significantly advances our understanding of the mechanisms of ER-phagy and also provides insights into organelle fragmentation in selective autophagy of other organelles.

Suggested Citation

  • Keisuke Mochida & Akinori Yamasaki & Kazuaki Matoba & Hiromi Kirisako & Nobuo N. Noda & Hitoshi Nakatogawa, 2020. "Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17163-y
    DOI: 10.1038/s41467-020-17163-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17163-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17163-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taeko Sasaki & Yasuharu Kushida & Takuya Norizuki & Hidetaka Kosako & Ken Sato & Miyuki Sato, 2024. "ALLO-1- and IKKE-1-dependent positive feedback mechanism promotes the initiation of paternal mitochondrial autophagy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Rayene Berkane & Hung Ho-Xuan & Marius Glogger & Pablo Sanz-Martinez & Lorène Brunello & Tristan Glaesner & Santosh Kumar Kuncha & Katharina Holzhüter & Sara Cano-Franco & Viviana Buonomo & Paloma Cab, 2023. "The function of ER-phagy receptors is regulated through phosphorylation-dependent ubiquitination pathways," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Ning Wang & Yoko Shibata & Joao A. Paulo & Steven P. Gygi & Tom A. Rapoport, 2023. "A conserved membrane curvature-generating protein is crucial for autophagosome formation in fission yeast," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17163-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.