IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17050-6.html
   My bibliography  Save this article

Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries

Author

Listed:
  • Lianfeng Zou

    (Pacific Northwest National Laboratory)

  • Yang He

    (Pacific Northwest National Laboratory)

  • Zhenyu Liu

    (University of Pittsburgh)

  • Haiping Jia

    (Pacific Northwest National Laboratory)

  • Jian Zhu

    (Lawrence Berkeley National Laboratory)

  • Jianming Zheng

    (Pacific Northwest National Laboratory)

  • Guofeng Wang

    (University of Pittsburgh)

  • Xiaolin Li

    (Pacific Northwest National Laboratory)

  • Jie Xiao

    (Pacific Northwest National Laboratory)

  • Jun Liu

    (Pacific Northwest National Laboratory)

  • Ji-Guang Zhang

    (Pacific Northwest National Laboratory)

  • Guoying Chen

    (Lawrence Berkeley National Laboratory)

  • Chongmin Wang

    (Pacific Northwest National Laboratory)

Abstract

It is classically well perceived that cathode–air interfacial reactions, often instantaneous and thermodynamic non-equilibrium, will lead to the formation of interfacial layers, which subsequently, often vitally, control the behaviour and performance of batteries. However, understanding of the nature of cathode–air interfacial reactions remain elusive. Here, using atomic-resolution, time-resolved in-situ environmental transmission electron microscopy and atomistic simulation, we reveal that the cathode–water interfacial reactions can lead to the surface passivation, where the resultant conformal LiOH layers present a critical thickness beyond which the otherwise sustained interfacial reactions are arrested. We rationalize that the passivation behavior is dictated by the Li+-water interaction driven Li-ion de-intercalation, rather than a direct cathode–gas chemical reaction. Further, we show that a thin disordered rocksalt layer formed on the cathode surface can effectively mitigate the surface degradation by suppressing chemical delithiation. The established passivation paradigm opens new venues for the development of novel high-energy and high-stability cathodes.

Suggested Citation

  • Lianfeng Zou & Yang He & Zhenyu Liu & Haiping Jia & Jian Zhu & Jianming Zheng & Guofeng Wang & Xiaolin Li & Jie Xiao & Jun Liu & Ji-Guang Zhang & Guoying Chen & Chongmin Wang, 2020. "Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17050-6
    DOI: 10.1038/s41467-020-17050-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17050-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17050-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinhao Shi & Ruijuan Qi & Xiaochen Feng & Jing Wang & Yong Li & Zhenpeng Yao & Xuan Wang & Qianqian Li & Xionggang Lu & Jiujun Zhang & Yufeng Zhao, 2022. "Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17050-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.