IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16652-4.html
   My bibliography  Save this article

High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking

Author

Listed:
  • Jeehye Yang

    (Sogang University)

  • Donghyo Hahm

    (Sungkyunkwan University (SKKU))

  • Kyunghwan Kim

    (Seoul National University)

  • Seunghyun Rhee

    (Seoul National University)

  • Myeongjae Lee

    (Korea University)

  • Seunghan Kim

    (Sogang University)

  • Jun Hyuk Chang

    (Sungkyunkwan University (SKKU))

  • Hye Won Park

    (Sogang University)

  • Jaehoon Lim

    (Center for Artificial Atoms, Sungkyunkwan University (SKKU))

  • Minkyoung Lee

    (Sogang University)

  • Hyeokjun Kim

    (Sogang University)

  • Joohee Bang

    (POSTECH)

  • Hyungju Ahn

    (POSTECH)

  • Jeong Ho Cho

    (Yonsei University)

  • Jeonghun Kwak

    (Seoul National University)

  • BongSoo Kim

    (Ulsan National Institute of Science and Technology (UNIST))

  • Changhee Lee

    (Seoul National University)

  • Wan Ki Bae

    (Sungkyunkwan University (SKKU))

  • Moon Sung Kang

    (Sogang University)

Abstract

Establishing multi-colour patterning technology for colloidal quantum dots is critical for realising high-resolution displays based on the material. Here, we report a solution-based processing method to form patterns of quantum dots using a light-driven ligand crosslinker, ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate). The crosslinker with two azide end groups can interlock the ligands of neighbouring quantum dots upon exposure to UV, yielding chemically robust quantum dot films. Exploiting the light-driven crosslinking process, different colour CdSe-based core-shell quantum dots can be photo-patterned; quantum dot patterns of red, green and blue primary colours with a sub-pixel size of 4 μm × 16 μm, corresponding to a resolution of >1400 pixels per inch, are demonstrated. The process is non-destructive, such that photoluminescence and electroluminescence characteristics of quantum dot films are preserved after crosslinking. We demonstrate that red crosslinked quantum dot light-emitting diodes exhibiting an external quantum efficiency as high as 14.6% can be obtained.

Suggested Citation

  • Jeehye Yang & Donghyo Hahm & Kyunghwan Kim & Seunghyun Rhee & Myeongjae Lee & Seunghan Kim & Jun Hyuk Chang & Hye Won Park & Jaehoon Lim & Minkyoung Lee & Hyeokjun Kim & Joohee Bang & Hyungju Ahn & Je, 2020. "High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16652-4
    DOI: 10.1038/s41467-020-16652-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16652-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16652-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingping Zhang & Gaoling Yang & Fei Li & Jianbing Shi & Haizheng Zhong, 2022. "Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Pengwei Xiao & Zhoufan Zhang & Junjun Ge & Yalei Deng & Xufeng Chen & Jian-Rong Zhang & Zhengtao Deng & Yu Kambe & Dmitri V. Talapin & Yuanyuan Wang, 2023. "Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Seongheon Baek & Hyeong Woo Ban & Sanggyun Jeong & Seung Hwae Heo & Da Hwi Gu & Wooyong Choi & Seungjun Choo & Yae Eun Park & Jisu Yoo & Moon Kee Choi & Jiseok Lee & Jae Sung Son, 2022. "Generalised optical printing of photocurable metal chalcogenides," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Junho Bae & Yuseop Shin & Hyungyu Yoo & Yongsu Choi & Jinho Lim & Dasom Jeon & Ilsoo Kim & Myungsoo Han & Seunghyun Lee, 2022. "Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16652-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.