IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16216-6.html
   My bibliography  Save this article

Publisher Correction: Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington’s disease

Author

Listed:
  • Rebecca Aron

    (Gladstone Institutes
    Taube-Koret Center for Neurodegenerative Disease
    Yumanity Therapeutics)

  • Pasquale Pellegrini

    (Gladstone Institutes)

  • Edward W. Green

    (University of Leicester
    DKFZ)

  • Daniel C. Maddison

    (University of Leicester)

  • Kwadwo Opoku-Nsiah

    (University of California—San Francisco)

  • Ana Osório Oliveira

    (Gladstone Institutes)

  • Jinny S. Wong

    (Gladstone Institutes)

  • Aaron C. Daub

    (Gladstone Institutes)

  • Flaviano Giorgini

    (University of Leicester)

  • Paul Muchowski

    (Gladstone Institutes)

  • Steven Finkbeiner

    (Gladstone Institutes
    Taube-Koret Center for Neurodegenerative Disease
    University of California—San Francisco
    University of California—San Francisco)

Abstract

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Suggested Citation

  • Rebecca Aron & Pasquale Pellegrini & Edward W. Green & Daniel C. Maddison & Kwadwo Opoku-Nsiah & Ana Osório Oliveira & Jinny S. Wong & Aaron C. Daub & Flaviano Giorgini & Paul Muchowski & Steven Finkb, 2020. "Publisher Correction: Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington’s disease," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16216-6
    DOI: 10.1038/s41467-020-16216-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16216-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16216-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Li & Yang Wang & Yue Luo & Yang Liu & Yong Yi & Jinsong Li & Yang Pan & Weiyuxin Li & Wanbang You & Qingyong Hu & Zhiqiang Zhao & Yujun Zhang & Yang Cao & Lingqiang Zhang & Junying Yuan & Zhi-Xio, 2022. "USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16216-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.