IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15940-3.html
   My bibliography  Save this article

Circuit implementation of a four-dimensional topological insulator

Author

Listed:
  • You Wang

    (Nanyang Technological University)

  • Hannah M. Price

    (University of Birmingham)

  • Baile Zhang

    (Nanyang Technological University
    Nanyang Technological University)

  • Y. D. Chong

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

The classification of topological insulators predicts the existence of high-dimensional topological phases that cannot occur in real materials, as these are limited to three or fewer spatial dimensions. We use electric circuits to experimentally implement a four-dimensional (4D) topological lattice. The lattice dimensionality is established by circuit connections, and not by mapping to a lower-dimensional system. On the lattice’s three-dimensional surface, we observe topological surface states that are associated with a nonzero second Chern number but vanishing first Chern numbers. The 4D lattice belongs to symmetry class AI, which refers to time-reversal-invariant and spinless systems with no special spatial symmetry. Class AI is topologically trivial in one to three spatial dimensions, so 4D is the lowest possible dimension for achieving a topological insulator in this class. This work paves the way to the use of electric circuits for exploring high-dimensional topological models.

Suggested Citation

  • You Wang & Hannah M. Price & Baile Zhang & Y. D. Chong, 2020. "Circuit implementation of a four-dimensional topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15940-3
    DOI: 10.1038/s41467-020-15940-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15940-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15940-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biye Xie & Renwen Huang & Shiyin Jia & Zemeng Lin & Junzheng Hu & Yao Jiang & Shaojie Ma & Peng Zhan & Minghui Lu & Zhenlin Wang & Yanfeng Chen & Shuang Zhang, 2023. "Bulk-local-density-of-state correspondence in topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Weixuan Zhang & Hao Yuan & Haiteng Wang & Fengxiao Di & Na Sun & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2022. "Observation of Bloch oscillations dominated by effective anyonic particle statistics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15940-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.