IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15209-9.html
   My bibliography  Save this article

The RNA-binding protein DAZL functions as repressor and activator of mRNA translation during oocyte maturation

Author

Listed:
  • Cai-Rong Yang

    (University of California
    University of California
    University of California)

  • Gabriel Rajkovic

    (University of California
    University of California
    University of California)

  • Enrico Maria Daldello

    (University of California
    University of California
    University of California)

  • Xuan G. Luong

    (University of California
    University of California
    University of California)

  • Jing Chen

    (University of California
    University of California
    University of California)

  • Marco Conti

    (University of California
    University of California
    University of California)

Abstract

Deleted in azoospermia-like (DAZL) is an RNA-binding protein critical for gamete development. In full-grown oocytes, the DAZL protein increases 4-fold during reentry into the meiotic cell cycle. Here, we have investigated the functional significance of this accumulation at a genome-wide level. Depletion of DAZL causes a block in maturation and widespread disruption in the pattern of ribosome loading on maternal transcripts. In addition to decreased translation, DAZL depletion also causes translational activation of a distinct subset of mRNAs both in quiescent and maturing oocytes, a function recapitulated with YFP-3′UTR reporters. DAZL binds to mRNAs whose translation is both repressed and activated during maturation. Injection of recombinant DAZL protein in DAZL-depleted oocytes rescues the translation and maturation to MII. Mutagenesis of putative DAZL-binding sites in these mRNAs mimics the effect of DAZL depletion. These findings demonstrate that DAZL regulates translation of maternal mRNAs, functioning both as the translational repressor and activator during oocyte maturation.

Suggested Citation

  • Cai-Rong Yang & Gabriel Rajkovic & Enrico Maria Daldello & Xuan G. Luong & Jing Chen & Marco Conti, 2020. "The RNA-binding protein DAZL functions as repressor and activator of mRNA translation during oocyte maturation," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15209-9
    DOI: 10.1038/s41467-020-15209-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15209-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15209-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gyu Ik Jung & Daniela Londoño-Vásquez & Sungjin Park & Ahna R. Skop & Ahmed Z. Balboula & Karen Schindler, 2023. "An oocyte meiotic midbody cap is required for developmental competence in mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Huili Liang & Wenting Chen & Xiaotong Liu & Ying Han & Adnan Khan & Changfa Wang & Muhammad Zahoor Khan, 2024. "Genetic Polymorphisms in Genes Associated with Mammalian Semen Quality Traits: A Review," Agriculture, MDPI, vol. 14(12), pages 1-23, November.
    3. Wenqi Hu & Haitao Zeng & Yanan Shi & Chuanchuan Zhou & Jiana Huang & Lei Jia & Siqi Xu & Xiaoyu Feng & Yanyan Zeng & Tuanlin Xiong & Wenze Huang & Peng Sun & Yajie Chang & Tingting Li & Cong Fang & Ke, 2022. "Single-cell transcriptome and translatome dual-omics reveals potential mechanisms of human oocyte maturation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15209-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.