IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14641-1.html
   My bibliography  Save this article

Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy

Author

Listed:
  • Sijing Chen

    (Zhejiang University)

  • Hyun Seok Oh

    (Seoul National University)

  • Bernd Gludovatz

    (UNSW Sydney)

  • Sang Jun Kim

    (Seoul National University)

  • Eun Soo Park

    (Seoul National University)

  • Ze Zhang

    (Zhejiang University)

  • Robert O. Ritchie

    (Lawrence Berkeley National Laboratory
    University of California)

  • Qian Yu

    (Zhejiang University)

Abstract

Strategies involving metastable phases have been the basis of the design of numerous alloys, yet research on metastable high-entropy alloys is still in its infancy. In dual-phase high-entropy alloys, the combination of local chemical environments and loading-induced crystal structure changes suggests a relationship between deformation mechanisms and chemical atomic distribution, which we examine in here in a Cantor-like Cr20Mn6Fe34Co34Ni6 alloy, comprising both face-centered cubic (fcc) and hexagonal closed packed (hcp) phases. We observe that partial dislocation activities result in stable three-dimensional stacking-fault networks. Additionally, the fraction of the stronger hcp phase progressively increases during plastic deformation by forming at the stacking-fault network boundaries in the fcc phase, serving as the major source of strain hardening. In this context, variations in local chemical composition promote a high density of Lomer-Cottrell locks, which facilitate the construction of the stacking-fault networks to provide nucleation sites for the hcp phase transformation.

Suggested Citation

  • Sijing Chen & Hyun Seok Oh & Bernd Gludovatz & Sang Jun Kim & Eun Soo Park & Ze Zhang & Robert O. Ritchie & Qian Yu, 2020. "Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14641-1
    DOI: 10.1038/s41467-020-14641-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14641-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14641-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Chung & Won Seok Choi & Hosun Jun & Hyeon-Seok Do & Byeong-Joo Lee & Pyuck-Pa Choi & Heung Nam Han & Won-Seok Ko & Seok Su Sohn, 2023. "Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Chongle Zhang & Shuaiyang Liu & Jinyu Zhang & Dongdong Zhang & Jie Kuang & Xiangyun Bao & Gang Liu & Jun Sun, 2023. "Trifunctional nanoprecipitates ductilize and toughen a strong laminated metastable titanium alloy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14641-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.