IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14181-3.html
   My bibliography  Save this article

Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice

Author

Listed:
  • Koji M. Nishiguchi

    (Tohoku University Graduate School of Medicine
    Tohoku University Graduate School of Medicine)

  • Kosuke Fujita

    (Tohoku University Graduate School of Medicine)

  • Fuyuki Miya

    (Tokyo Medical and Dental University)

  • Shota Katayama

    (Tohoku University Graduate School of Medicine)

  • Toru Nakazawa

    (Tohoku University Graduate School of Medicine
    Tohoku University Graduate School of Medicine
    Tohoku University Graduate School of Medicine)

Abstract

Supplementing wildtype copies of functionally defective genes with adeno-associated virus (AAV) is a strategy being explored clinically for various retinal dystrophies. However, the low cargo limit of this vector allows its use in only a fraction of patients with mutations in relatively small pathogenic genes. To overcome this issue, we developed a single AAV platform that allows local replacement of a mutated sequence with its wildtype counterpart, based on combined CRISPR-Cas9 and micro-homology-mediated end-joining (MMEJ). In blind mice, the mutation replacement rescued approximately 10% of photoreceptors, resulting in an improvement in light sensitivity and an increase in visual acuity. These effects were comparable to restoration mediated by gene supplementation, which targets a greater number of photoreceptors. This strategy may be applied for the treatment of inherited disorders caused by mutations in larger genes, for which conventional gene supplementation therapy is not currently feasible.

Suggested Citation

  • Koji M. Nishiguchi & Kosuke Fujita & Fuyuki Miya & Shota Katayama & Toru Nakazawa, 2020. "Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14181-3
    DOI: 10.1038/s41467-019-14181-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14181-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14181-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrizia Tornabene & Rita Ferla & Manel Llado-Santaeularia & Miriam Centrulo & Margherita Dell’Anno & Federica Esposito & Elena Marrocco & Emanuela Pone & Renato Minopoli & Carolina Iodice & Edoardo N, 2022. "Therapeutic homology-independent targeted integration in retina and liver," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14181-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.