IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13886-9.html
   My bibliography  Save this article

Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate

Author

Listed:
  • Yingcheng Wang

    (Yunnan University)

  • Sheng Wang

    (Yunnan University)

  • Wenyu Shan

    (Yunnan University)

  • Zhihui Shao

    (Yunnan University)

Abstract

Catalytic asymmetric functionalization of the N–H groups of indoles and carbazoles constitutes an important but less developed class of reactions. Herein, we describe a propargylation protocol involving the use of a lithium SPINOL phosphate as the chiral catalyst and our recently developed C-alkynyl N,O-acetals as propargylating reagents. The direct asymmetric N-propargylation of indoles and carbazoles provides hitherto inaccessible N-functionalized products. Notably, the efficiency of the system allows reactions to be run at a very low catalyst loading (as low as 0.1 mol%). Mechanistic information about the titled reaction is also disclosed. This study represents an advance in the direct asymmetric functionalization of the N–H bonds of indoles and carbazoles, and additionally expands on the application of chiral alkali metal salts of chiral phosphoric acids in asymmetric catalysis.

Suggested Citation

  • Yingcheng Wang & Sheng Wang & Wenyu Shan & Zhihui Shao, 2020. "Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13886-9
    DOI: 10.1038/s41467-019-13886-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13886-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13886-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiangtao Ren & Zheng Sun & Shuang Zhao & Jinyuan Huang & Yukun Wang & Cheng Zhang & Jinhai Huang & Chenhao Zhang & Ruipu Zhang & Zhihan Zhang & Xu Ji & Zhihui Shao, 2024. "Enantioselective synthesis of chiral α,α-dialkyl indoles and related azoles by cobalt-catalyzed hydroalkylation and regioselectivity switch," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13886-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.