IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13682-5.html
   My bibliography  Save this article

A hierarchically assembled 88-nuclei silver-thiacalix[4]arene nanocluster

Author

Listed:
  • Zhi Wang

    (State Key Laboratory of Crystal Materials, Shandong University)

  • Hai-Feng Su

    (Xiamen University)

  • Yi-Wen Gong

    (State Key Laboratory of Crystal Materials, Shandong University)

  • Qing-Ping Qu

    (State Key Laboratory of Crystal Materials, Shandong University)

  • Yan-Feng Bi

    (Liaoning Shihua University)

  • Chen-Ho Tung

    (State Key Laboratory of Crystal Materials, Shandong University)

  • Di Sun

    (State Key Laboratory of Crystal Materials, Shandong University)

  • Lan-Sun Zheng

    (Xiamen University)

Abstract

Thiacalix[4]arenes as a family of promising ligands have been widely used to construct polynuclear metal clusters, but scarcely employed in silver nanoclusters. Herein, an anion-templated Ag88 nanocluster (SD/Ag88a) built from p-tert-butylthiacalix[4]arene (H4TC4A) is reported. Single-crystal X-ray diffraction reveals that C4-symmetric SD/Ag88a resembles a metal-organic super calix comprised of eight TC4A4− as walls and 88 silver atoms as base, which can be deconstructed to eight [CrO4@Ag11(TC4A)(EtS)4(OAc)] secondary building units arranged in an annulus encircling a CrO42− in the center. Local and global anion template effects from chromates are individually manifested in SD/Ag88a. The solution stability and hierarchical assembly mechanism of SD/Ag88a are studied by using electrospray mass spectrometry. The Ag88 nanocluster represents the highest nuclearity metal cluster capped by TC4A4−. This work not only exemplify the specific macrocyclic effects of TC4A4− in the construction of silver nanocluster but also realize the shape heredity of TC4A4− to overall silver super calix.

Suggested Citation

  • Zhi Wang & Hai-Feng Su & Yi-Wen Gong & Qing-Ping Qu & Yan-Feng Bi & Chen-Ho Tung & Di Sun & Lan-Sun Zheng, 2020. "A hierarchically assembled 88-nuclei silver-thiacalix[4]arene nanocluster," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13682-5
    DOI: 10.1038/s41467-019-13682-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13682-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13682-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan-Hua Zhao & Bao-Liang Han & Hai-Feng Su & Qi-Lin Guo & Wen-Xin Wang & Jing-Qiu Zhuo & Yong-Nan Guo & Jia-Long Liu & Geng-Geng Luo & Ping Cui & Di Sun, 2024. "Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Xue-Jing Zhai & Meng-Yu Luo & Xi-Ming Luo & Xi-Yan Dong & Yubing Si & Chong Zhang & Zhen Han & Runping Han & Shuang-Quan Zang & Thomas C. W. Mak, 2024. "Hierarchical assembly of Ag40 nanowheel ranging from building blocks to diverse superstructure regulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xi Kang & Xiao Wei & Xiaokang Liu & Sicong Wang & Tao Yao & Shuxin Wang & Manzhou Zhu, 2021. "A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13682-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.