IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13555-x.html
   My bibliography  Save this article

The epigenomic landscape of transposable elements across normal human development and anatomy

Author

Listed:
  • Erica C. Pehrsson

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Mayank N. K. Choudhary

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Vasavi Sundaram

    (Washington University School of Medicine
    Washington University School of Medicine
    Wellcome Genome Campus, Hinxton)

  • Ting Wang

    (Washington University School of Medicine
    Washington University School of Medicine
    Washington University School of Medicine)

Abstract

Transposable elements (TEs) have deposited functional regulatory elements throughout the human genome. Although most are silenced, certain TEs have been co-opted by the host. However, a comprehensive, multidimensional picture of the contribution of TEs to normal human gene regulation is still lacking. Here, we quantify the epigenomic status of TEs across human anatomy and development using data from the Roadmap Epigenomics Project. We find that TEs encompass a quarter of the human regulatory epigenome, and 47% of elements can be in an active regulatory state. We demonstrate that SINEs are enriched relative to other classes for active and transcribed marks, that TEs encompass a higher proportion of enhancer states in the hematopoietic lineage, and that DNA methylation of Alu elements decreases with age, corresponding with a loss of CpG islands. Finally, we identify TEs that may perform an evolutionarily conserved regulatory function, providing a systematic profile of TE activity in normal human tissue.

Suggested Citation

  • Erica C. Pehrsson & Mayank N. K. Choudhary & Vasavi Sundaram & Ting Wang, 2019. "The epigenomic landscape of transposable elements across normal human development and anatomy," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13555-x
    DOI: 10.1038/s41467-019-13555-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13555-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13555-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denis Torre & Nancy J. Francoeur & Yael Kalma & Ilana Gross Carmel & Betsaida S. Melo & Gintaras Deikus & Kimaada Allette & Ron Flohr & Maya Fridrikh & Konstantinos Vlachos & Kent Madrid & Hardik Shah, 2023. "Isoform-resolved transcriptome of the human preimplantation embryo," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13555-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.