IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13407-8.html
   My bibliography  Save this article

Conformational pathway provides unique sensitivity to a synaptic mGluR

Author

Listed:
  • Chris H. Habrian

    (University of California)

  • Joshua Levitz

    (University of California
    Weill Cornell Medical College)

  • Vojtech Vyklicky

    (University of California)

  • Zhu Fu

    (University of California)

  • Adam Hoagland

    (University of California)

  • Isabelle McCort-Tranchepain

    (Paris Descartes University)

  • Francine Acher

    (Paris Descartes University)

  • Ehud Y. Isacoff

    (University of California
    University of California
    University of California
    Lawrence Berkeley National Laboratory)

Abstract

Metabotropic glutamate receptors (mGluRs) are dimeric G-protein–coupled receptors that operate at synapses. Macroscopic and single molecule FRET to monitor structural rearrangements in the ligand binding domain (LBD) of the mGluR7/7 homodimer revealed it to have an apparent affinity ~4000-fold lower than other mGluRs and a maximal activation of only ~10%, seemingly too low for activation at synapses. However, mGluR7 heterodimerizes, and we find it to associate with mGluR2 in the hippocampus. Strikingly, the mGluR2/7 heterodimer has high affinity and efficacy. mGluR2/7 shows cooperativity in which an unliganded subunit greatly enhances activation by agonist bound to its heteromeric partner, and a unique conformational pathway to activation, in which mGluR2/7 partially activates in the Apo state, even when its LBDs are held open by antagonist. High sensitivity and an unusually broad dynamic range should enable mGluR2/7 to respond to both glutamate transients from nearby release and spillover from distant synapses.

Suggested Citation

  • Chris H. Habrian & Joshua Levitz & Vojtech Vyklicky & Zhu Fu & Adam Hoagland & Isabelle McCort-Tranchepain & Francine Acher & Ehud Y. Isacoff, 2019. "Conformational pathway provides unique sensitivity to a synaptic mGluR," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13407-8
    DOI: 10.1038/s41467-019-13407-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13407-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13407-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kento Ojima & Wataru Kakegawa & Tokiwa Yamasaki & Yuta Miura & Masayuki Itoh & Yukiko Michibata & Ryou Kubota & Tomohiro Doura & Eriko Miura & Hiroshi Nonaka & Seiya Mizuno & Satoru Takahashi & Michis, 2022. "Coordination chemogenetics for activation of GPCR-type glutamate receptors in brain tissue," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13407-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.