IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13322-y.html
   My bibliography  Save this article

GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics

Author

Listed:
  • Ying Wang

    (University of Marburg)

  • Alice Sherrard

    (University of Bristol, University Walk)

  • Bing Zhao

    (University of Freiburg)

  • Michael Melak

    (University of Marburg)

  • Jonathan Trautwein

    (University of Marburg)

  • Eva-Maria Kleinschnitz

    (University of Marburg)

  • Nikolaos Tsopoulidis

    (Heidelberg University Hospital)

  • Oliver T. Fackler

    (Heidelberg University Hospital)

  • Carsten Schwan

    (University of Freiburg)

  • Robert Grosse

    (University of Freiburg
    University of Freiburg)

Abstract

Although the properties of the actin cytoskeleton in the cytoplasm are well characterized, the regulation and function of nuclear actin filaments are only recently emerging. We previously demonstrated serum-induced, transient assembly of filamentous actin within somatic cell nuclei. However, the extracellular cues, cell surface receptors as well as underlying signaling mechanisms have been unclear. Here we demonstrate that physiological ligands for G protein-coupled receptors (GPCRs) promote nuclear F-actin assembly via heterotrimeric Gαq proteins. Signal-induced nuclear actin responses require calcium release from the endoplasmic reticulum (ER) targeting the ER-associated formin INF2 at the inner nuclear membrane (INM). Notably, calcium signaling promotes the polymerization of linear actin filaments emanating from the INM towards the nuclear interior. We show that GPCR and calcium elevations trigger nuclear actin-dependent alterations in chromatin organization, uncovering a general cellular mechanism by which physiological ligands and calcium promote nuclear F-actin assembly for rapid responses towards chromatin dynamics.

Suggested Citation

  • Ying Wang & Alice Sherrard & Bing Zhao & Michael Melak & Jonathan Trautwein & Eva-Maria Kleinschnitz & Nikolaos Tsopoulidis & Oliver T. Fackler & Carsten Schwan & Robert Grosse, 2019. "GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13322-y
    DOI: 10.1038/s41467-019-13322-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13322-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13322-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Buer Sen & Zhihui Xie & Michelle D. Thomas & Samantha G. Pattenden & Sean Howard & Cody McGrath & Maya Styner & Gunes Uzer & Terrence S. Furey & Janet Rubin, 2024. "Nuclear actin structure regulates chromatin accessibility," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13322-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.