IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13226-x.html
   My bibliography  Save this article

CRISPR-Cas3 induces broad and unidirectional genome editing in human cells

Author

Listed:
  • Hiroyuki Morisaka

    (Osaka University
    Kochi University)

  • Kazuto Yoshimi

    (Osaka University
    Graduate School of Medicine, Osaka University
    The University of Tokyo)

  • Yuya Okuzaki

    (Kyoto University)

  • Peter Gee

    (Kyoto University)

  • Yayoi Kunihiro

    (Osaka University)

  • Ekasit Sonpho

    (Graduate School of Medicine, Osaka University
    Faculty of Science, Mahidol University)

  • Huaigeng Xu

    (Kyoto University)

  • Noriko Sasakawa

    (Kyoto University)

  • Yuki Naito

    (Database Center for Life Science
    National Institute of Genetics)

  • Shinichiro Nakada

    (Osaka University)

  • Takashi Yamamoto

    (Hiroshima University)

  • Shigetoshi Sano

    (Kochi University)

  • Akitsu Hotta

    (Kyoto University)

  • Junji Takeda

    (Osaka University
    Osaka University)

  • Tomoji Mashimo

    (Osaka University
    Graduate School of Medicine, Osaka University
    The University of Tokyo)

Abstract

Although single-component Class 2 CRISPR systems, such as type II Cas9 or type V Cas12a (Cpf1), are widely used for genome editing in eukaryotic cells, the application of multi-component Class 1 CRISPR has been less developed. Here we demonstrate that type I-E CRISPR mediates distinct DNA cleavage activity in human cells. Notably, Cas3, which possesses helicase and nuclease activity, predominantly triggered several thousand base pair deletions upstream of the 5′-ARG protospacer adjacent motif (PAM), without prominent off-target activity. This Cas3-mediated directional and broad DNA degradation can be used to introduce functional gene knockouts and knock-ins. As an example of potential therapeutic applications, we show Cas3-mediated exon-skipping of the Duchenne muscular dystrophy (DMD) gene in patient-induced pluripotent stem cells (iPSCs). These findings broaden our understanding of the Class 1 CRISPR system, which may serve as a unique genome editing tool in eukaryotic cells distinct from the Class 2 CRISPR system.

Suggested Citation

  • Hiroyuki Morisaka & Kazuto Yoshimi & Yuya Okuzaki & Peter Gee & Yayoi Kunihiro & Ekasit Sonpho & Huaigeng Xu & Noriko Sasakawa & Yuki Naito & Shinichiro Nakada & Takashi Yamamoto & Shigetoshi Sano & A, 2019. "CRISPR-Cas3 induces broad and unidirectional genome editing in human cells," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13226-x
    DOI: 10.1038/s41467-019-13226-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13226-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13226-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Meiling Lu & Chenlin Yu & Yuwen Zhang & Wenjun Ju & Zhi Ye & Chenyang Hua & Jinze Mao & Chunyi Hu & Zhenhuang Yang & Yibei Xiao, 2024. "Structure and genome editing of type I-B CRISPR-Cas," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Duško Lainšček & Vida Forstnerič & Veronika Mikolič & Špela Malenšek & Peter Pečan & Mojca Benčina & Matjaž Sever & Helena Podgornik & Roman Jerala, 2022. "Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13226-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.