IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13087-4.html
   My bibliography  Save this article

Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity

Author

Listed:
  • Ge Wu

    (City University of Hong Kong)

  • Chang Liu

    (City University of Hong Kong)

  • Ligang Sun

    (Harbin Institute of Technology
    City University of Hong Kong)

  • Qing Wang

    (City University of Hong Kong
    Institute of Materials Science, Shanghai University)

  • Baoan Sun

    (Institute of Physics, Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Bin Han

    (City University of Hong Kong)

  • Ji-Jung Kai

    (City University of Hong Kong)

  • Junhua Luan

    (City University of Hong Kong)

  • Chain Tsuan Liu

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

  • Ke Cao

    (City University of Hong Kong)

  • Yang Lu

    (City University of Hong Kong
    City University of Hong Kong)

  • Lizi Cheng

    (City University of Hong Kong)

  • Jian Lu

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong
    Shenzhen Research Institute of City University of Hong Kong)

Abstract

High strength and high ductility are often mutually exclusive properties for structural metallic materials. This is particularly important for aluminum (Al)-based alloys which are widely commercially employed. Here, we introduce a hierarchical nanostructured Al alloy with a structure of Al nanograins surrounded by nano-sized metallic glass (MG) shells. It achieves an ultrahigh yield strength of 1.2 GPa in tension (1.7 GPa in compression) along with 15% plasticity in tension (over 70% in compression). The nano-sized MG phase facilitates such ultrahigh strength by impeding dislocation gliding from one nanograin to another, while continuous generation-movement-annihilation of dislocations in the Al nanograins and the flow behavior of the nano-sized MG phase result in increased plasticity. This plastic deformation mechanism is also an efficient way to decrease grain size to sub-10 nm size for low melting temperature metals like Al, making this structural design one solution to the strength-plasticity trade-off.

Suggested Citation

  • Ge Wu & Chang Liu & Ligang Sun & Qing Wang & Baoan Sun & Bin Han & Ji-Jung Kai & Junhua Luan & Chain Tsuan Liu & Ke Cao & Yang Lu & Lizi Cheng & Jian Lu, 2019. "Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13087-4
    DOI: 10.1038/s41467-019-13087-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13087-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13087-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge Wu & Sida Liu & Qing Wang & Jing Rao & Wenzhen Xia & Yong-Qiang Yan & Jürgen Eckert & Chang Liu & En Ma & Zhi-Wei Shan, 2023. "Substantially enhanced homogeneous plastic flow in hierarchically nanodomained amorphous alloys," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Ge Wu & Chang Liu & Yong-Qiang Yan & Sida Liu & Xinyu Ma & Shengying Yue & Zhi-Wei Shan, 2024. "Elemental partitioning-mediated crystalline-to-amorphous phase transformation under quasi-static deformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Xingjia He & Yu Zhang & Xinlei Gu & Jiangwei Wang & Jinlei Qi & Jun Hao & Longpeng Wang & Hao Huang & Mao Wen & Kan Zhang & Weitao Zheng, 2023. "Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13087-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.