IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12892-1.html
   My bibliography  Save this article

Stress breaks universal aging behavior in a metallic glass

Author

Listed:
  • Amlan Das

    (University of Illinois at Urbana-Champaign)

  • Peter M. Derlet

    (Paul Scherrer Institute)

  • Chaoyang Liu

    (University of Illinois at Urbana-Champaign)

  • Eric M. Dufresne

    (Argonne National Laboratory)

  • Robert Maaß

    (University of Illinois at Urbana-Champaign)

Abstract

Numerous disordered materials display a monotonous slowing down in their internal dynamics with age. In the case of metallic glasses, this general behavior across different temperatures and alloys has been used to establish an empirical universal superposition principle of time, waiting time, and temperature. Here we demonstrate that the application of a mechanical stress within the elastic regime breaks this universality. Using in-situ x-ray photon correlation spectroscopy (XPCS) experiments, we show that strong fluctuations between slow and fast structural dynamics exist, and that these generally exhibit larger relaxation times than in the unstressed case. On average, relaxation times increase with stress magnitude, and even preloading times of several days do not exhaust the structural dynamics under load. A model Lennard-Jones glass under shear deformation replicates many of the features revealed with XPCS, indicating that local and heterogeneous microplastic events can cause the strongly non-monotonous spectrum of relaxation times.

Suggested Citation

  • Amlan Das & Peter M. Derlet & Chaoyang Liu & Eric M. Dufresne & Robert Maaß, 2019. "Stress breaks universal aging behavior in a metallic glass," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12892-1
    DOI: 10.1038/s41467-019-12892-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12892-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12892-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Birte Riechers & Amlan Das & Eric Dufresne & Peter M. Derlet & Robert Maaß, 2024. "Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Nimmi Das Anthuparambil & Anita Girelli & Sonja Timmermann & Marvin Kowalski & Mohammad Sayed Akhundzadeh & Sebastian Retzbach & Maximilian D. Senft & Michelle Dargasz & Dennis Gutmüller & Anusha Hire, 2023. "Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12892-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.