IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12858-3.html
   My bibliography  Save this article

Understanding carbon dioxide activation and carbon–carbon coupling over nickel

Author

Listed:
  • Charlotte Vogt

    (Utrecht University)

  • Matteo Monai

    (Utrecht University)

  • Ellen B. Sterk

    (Utrecht University)

  • Jonas Palle

    (Utrecht University)

  • Angela E. M. Melcherts

    (Utrecht University)

  • Bart Zijlstra

    (Eindhoven University of Technology)

  • Esther Groeneveld

    (BASF Nederland B.V.)

  • Peter H. Berben

    (BASF Nederland B.V.)

  • Jelle M. Boereboom

    (Utrecht University)

  • Emiel J. M. Hensen

    (Eindhoven University of Technology)

  • Florian Meirer

    (Utrecht University)

  • Ivo A. W. Filot

    (Eindhoven University of Technology)

  • Bert M. Weckhuysen

    (Utrecht University)

Abstract

Carbon dioxide is a desired feedstock for platform molecules, such as carbon monoxide or higher hydrocarbons, from which we will be able to make many different useful, value-added chemicals. Its catalytic hydrogenation over abundant metals requires the amalgamation of theoretical knowledge with materials design. Here we leverage a theoretical understanding of structure sensitivity, along with a library of different supports, to tune the selectivity of methanation in the Power-to-Gas concept over nickel. For example, we show that carbon dioxide hydrogenation over nickel can and does form propane, and that activity and selectivity can be tuned by supporting different nickel particle sizes on various oxides. This theoretical and experimental toolbox is not only useful for the highly selective production of methane, but also provides new insights for carbon dioxide activation and subsequent carbon–carbon coupling towards value-added products thereby reducing the deleterious effects of this environmentally harmful molecule.

Suggested Citation

  • Charlotte Vogt & Matteo Monai & Ellen B. Sterk & Jonas Palle & Angela E. M. Melcherts & Bart Zijlstra & Esther Groeneveld & Peter H. Berben & Jelle M. Boereboom & Emiel J. M. Hensen & Florian Meirer &, 2019. "Understanding carbon dioxide activation and carbon–carbon coupling over nickel," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12858-3
    DOI: 10.1038/s41467-019-12858-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12858-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12858-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guusje Delen & Matteo Monai & Katarina Stančiaková & Bettina Baumgartner & Florian Meirer & Bert M. Weckhuysen, 2023. "Structure sensitivity in gas sorption and conversion on metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ming Xu & Xuetao Qin & Yao Xu & Xiaochen Zhang & Lirong Zheng & Jin-Xun Liu & Meng Wang & Xi Liu & Ding Ma, 2022. "Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Charlotte Vogt & Florian Meirer & Matteo Monai & Esther Groeneveld & Davide Ferri & Rutger A. Santen & Maarten Nachtegaal & Raymond R. Unocic & Anatoly I. Frenkel & Bert M. Weckhuysen, 2021. "Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Lili Lin & Jinjia Liu & Xi Liu & Zirui Gao & Ning Rui & Siyu Yao & Feng Zhang & Maolin Wang & Chang Liu & Lili Han & Feng Yang & Sen Zhang & Xiao-dong Wen & Sanjaya D. Senanayake & Yichao Wu & Xiaonia, 2021. "Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Liang Shen & Minghui Zhu & Jing Xu, 2021. "Effect of micropores on the structure and CO2 methanation performance of supported Ni/SiO2 catalyst," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1213-1221, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12858-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.