IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12759-5.html
   My bibliography  Save this article

Modeling and simulation of complex dynamic musculoskeletal architectures

Author

Listed:
  • Xiaotian Zhang

    (University of Illinois at Urbana-Champaign)

  • Fan Kiat Chan

    (University of Illinois at Urbana-Champaign)

  • Tejaswin Parthasarathy

    (University of Illinois at Urbana-Champaign)

  • Mattia Gazzola

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

Abstract

Natural creatures, from fish and cephalopods to snakes and birds, combine neural control, sensory feedback and compliant mechanics to effectively operate across dynamic, uncertain environments. In order to facilitate the understanding of the biophysical mechanisms at play and to streamline their potential use in engineering applications, we present here a versatile numerical approach to the simulation of musculoskeletal architectures. It relies on the assembly of heterogenous, active and passive Cosserat rods into dynamic structures that model bones, tendons, ligaments, fibers and muscle connectivity. We demonstrate its utility in a range of problems involving biological and soft robotic scenarios across scales and environments: from the engineering of millimeter-long bio-hybrid robots to the synthesis and reconstruction of complex musculoskeletal systems. The versatility of this methodology offers a framework to aid forward and inverse bioengineering designs as well as fundamental discovery in the functioning of living organisms.

Suggested Citation

  • Xiaotian Zhang & Fan Kiat Chan & Tejaswin Parthasarathy & Mattia Gazzola, 2019. "Modeling and simulation of complex dynamic musculoskeletal architectures," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12759-5
    DOI: 10.1038/s41467-019-12759-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12759-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12759-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuechuan Wang & Yongyue Wang & Mingzhu Zhu & Xiaokui Yue, 2024. "2-dimensional impact-damping electrostatic actuators with elastomer-enhanced auxetic structure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Girish Chowdhary & Mattia Gazzola & Girish Krishnan & Chinmay Soman & Sarah Lovell, 2019. "Soft Robotics as an Enabling Technology for Agroforestry Practice and Research," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    3. Xiaotian Zhang & Noel Naughton & Tejaswin Parthasarathy & Mattia Gazzola, 2021. "Friction modulation in limbless, three-dimensional gaits and heterogeneous terrains," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12759-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.