IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12663-y.html
   My bibliography  Save this article

Mapping the increased minimum mortality temperatures in the context of global climate change

Author

Listed:
  • Qian Yin

    (Chinese Academy of Sciences. A11)

  • Jinfeng Wang

    (Chinese Academy of Sciences. A11
    University of Chinese Academy of Sciences)

  • Zhoupeng Ren

    (Chinese Academy of Sciences. A11)

  • Jie Li

    (Ningxia University)

  • Yuming Guo

    (Monash University
    College of Public Health, Zhengzhou University)

Abstract

Minimum mortality temperature (MMT) is an important indicator to assess the temperature–mortality relationship. It reflects human adaptability to local climate. The existing MMT estimates were usually based on case studies in data rich regions, and limited evidence about MMT was available at a global scale. It is still unclear what the most significant driver of MMT is and how MMT will change under global climate change. Here, by analysing MMTs in 420 locations covering six continents (Antarctica was excluded) in the world, we found that although the MMT changes geographically, it is very close to the local most frequent temperature (MFT) in the same period. The association between MFT and MMT is not changed when we adjust for latitude and study year. Based on the MFT~MMT association, we estimate and map the global distribution of MMTs in the present (2010s) and the future (2050s) for the first time.

Suggested Citation

  • Qian Yin & Jinfeng Wang & Zhoupeng Ren & Jie Li & Yuming Guo, 2019. "Mapping the increased minimum mortality temperatures in the context of global climate change," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12663-y
    DOI: 10.1038/s41467-019-12663-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12663-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12663-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodney P. Jones & Andriy Ponomarenko, 2022. "Trends in Excess Winter Mortality (EWM) from 1900/01 to 2019/20—Evidence for a Complex System of Multiple Long-Term Trends," IJERPH, MDPI, vol. 19(6), pages 1-24, March.
    2. Lida Dimitriadou & Panagiotis Nastos & Kostas Eleftheratos & John Kapsomenakis & Christos Zerefos, 2022. "Mortality Related to Air Temperature in European Cities, Based on Threshold Regression Models," IJERPH, MDPI, vol. 19(7), pages 1-27, March.
    3. Quansheng Ge & Mengmeng Hao & Fangyu Ding & Dong Jiang & Jürgen Scheffran & David Helman & Tobias Ide, 2022. "Modelling armed conflict risk under climate change with machine learning and time-series data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Raimi, Daniel, 2021. "Effects of Climate Change on Heat- and Cold-Related Mortality: A Literature Review to Inform Updated Estimates of the Social Cost of Carbon," RFF Working Paper Series 21-12, Resources for the Future.
    5. Xu, Xin & An, Haizhong & Huang, Shupei & Jia, Nanfei & Qi, Yajie, 2024. "Measurement of daily climate physical risks and climate transition risks faced by China's energy sector stocks," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 625-640.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12663-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.