IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12193-7.html
   My bibliography  Save this article

The structural basis for RNA selectivity by the IMP family of RNA-binding proteins

Author

Listed:
  • Jeetayu Biswas

    (Albert Einstein College of Medicine)

  • Vivek L. Patel

    (Massachusetts General Hospital)

  • Varun Bhaskar

    (Friedrich Miescher Institute for Biomedical Research)

  • Jeffrey A. Chao

    (Friedrich Miescher Institute for Biomedical Research)

  • Robert H. Singer

    (Albert Einstein College of Medicine
    Janelia Research Campus)

  • Carolina Eliscovich

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

Abstract

The IGF2 mRNA-binding proteins (ZBP1/IMP1, IMP2, IMP3) are highly conserved post-transcriptional regulators of RNA stability, localization and translation. They play important roles in cell migration, neural development, metabolism and cancer cell survival. The knockout phenotypes of individual IMP proteins suggest that each family member regulates a unique pool of RNAs, yet evidence and an underlying mechanism for this is lacking. Here, we combine systematic evolution of ligands by exponential enrichment (SELEX) and NMR spectroscopy to demonstrate that the major RNA-binding domains of the two most distantly related IMPs (ZBP1 and IMP2) bind to different consensus sequences and regulate targets consistent with their knockout phenotypes and roles in disease. We find that the targeting specificity of each IMP is determined by few amino acids in their variable loops. As variable loops often differ amongst KH domain paralogs, we hypothesize that this is a general mechanism for evolving specificity and regulation of the transcriptome.

Suggested Citation

  • Jeetayu Biswas & Vivek L. Patel & Varun Bhaskar & Jeffrey A. Chao & Robert H. Singer & Carolina Eliscovich, 2019. "The structural basis for RNA selectivity by the IMP family of RNA-binding proteins," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12193-7
    DOI: 10.1038/s41467-019-12193-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12193-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12193-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Ye & Wen Yang & Soon Yi & Yanan Zhao & Gabriele Varani & Eckhard Jankowsky & Fan Yang, 2023. "Two distinct binding modes provide the RNA-binding protein RbFox with extraordinary sequence specificity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Tatsuya Yoshizawa & Yoshifumi Sato & Shihab U. Sobuz & Tomoya Mizumoto & Tomonori Tsuyama & Md. Fazlul Karim & Keishi Miyata & Masayoshi Tasaki & Masaya Yamazaki & Yuichi Kariba & Norie Araki & Eiichi, 2022. "SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12193-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.