IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11428-x.html
   My bibliography  Save this article

Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread

Author

Listed:
  • Nathan T. Jacobs

    (Emory University School of Medicine)

  • Nina O. Onuoha

    (Emory University School of Medicine)

  • Alice Antia

    (Emory University School of Medicine)

  • John Steel

    (Emory University School of Medicine
    Influenza Division, Centers for Disease Control and Prevention)

  • Rustom Antia

    (Emory University)

  • Anice C. Lowen

    (Emory University School of Medicine
    Emory University School of Medicine)

Abstract

Segmentation of viral genomes into multiple RNAs creates the potential for replication of incomplete viral genomes (IVGs). Here we use a single-cell approach to quantify influenza A virus IVGs and examine their fitness implications. We find that each segment of influenza A/Panama/2007/99 (H3N2) virus has a 58% probability of being replicated in a cell infected with a single virion. Theoretical methods predict that IVGs carry high costs in a well-mixed system, as 3.6 virions are required for replication of a full genome. Spatial structure is predicted to mitigate these costs, however, and experimental manipulations of spatial structure indicate that local spread facilitates complementation. A virus entirely dependent on co-infection was used to assess relevance of IVGs in vivo. This virus grows robustly in guinea pigs, but is less infectious and does not transmit. Thus, co-infection allows IVGs to contribute to within-host spread, but complete genomes may be critical for transmission.

Suggested Citation

  • Nathan T. Jacobs & Nina O. Onuoha & Alice Antia & John Steel & Rustom Antia & Anice C. Lowen, 2019. "Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11428-x
    DOI: 10.1038/s41467-019-11428-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11428-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11428-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katherine A. Amato & Luis A. Haddock & Katarina M. Braun & Victoria Meliopoulos & Brandi Livingston & Rebekah Honce & Grace A. Schaack & Emma Boehm & Christina A. Higgins & Gabrielle L. Barry & Katia , 2022. "Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Ketaki Ganti & Anish Bagga & Silvia Carnaccini & Lucas M. Ferreri & Ginger Geiger & C. Joaquin Caceres & Brittany Seibert & Yonghai Li & Liping Wang & Taeyong Kwon & Yuhao Li & Igor Morozov & Wenjun M, 2022. "Influenza A virus reassortment in mammals gives rise to genetically distinct within-host subpopulations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Asher Leeks & Stuart A. West & Melanie Ghoul, 2021. "The evolution of cheating in viruses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11428-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.