IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11269-8.html
   My bibliography  Save this article

Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death

Author

Listed:
  • Wei Li

    (Zhejiang University)

  • Jie Yang

    (Zhejiang University)

  • Lihua Luo

    (Zhejiang University)

  • Mengshi Jiang

    (Zhejiang University)

  • Bing Qin

    (Zhejiang University)

  • Hang Yin

    (Zhejiang University)

  • Chunqi Zhu

    (Zhejiang University)

  • Xiaoling Yuan

    (Zhejiang University)

  • Junlei Zhang

    (Zhejiang University)

  • Zhenyu Luo

    (Zhejiang University)

  • Yongzhong Du

    (Zhejiang University)

  • Qingpo Li

    (Zhejiang University)

  • Yan Lou

    (The First Affiliated Hospital of Medical School of Zhejiang University)

  • Yunqing Qiu

    (The First Affiliated Hospital of Medical School of Zhejiang University)

  • Jian You

    (Zhejiang University)

Abstract

Immunogenic cell death (ICD)-associated immunogenicity can be evoked through reactive oxygen species (ROS) produced via endoplasmic reticulum (ER) stress. In this study, we generate a double ER-targeting strategy to realize photodynamic therapy (PDT) photothermal therapy (PTT) immunotherapy. This nanosystem consists of ER-targeting pardaxin (FAL) peptides modified-, indocyanine green (ICG) conjugated- hollow gold nanospheres (FAL-ICG-HAuNS), together with an oxygen-delivering hemoglobin (Hb) liposome (FAL-Hb lipo), designed to reverse hypoxia. Compared with non-targeting nanosystems, the ER-targeting naosystem induces robust ER stress and calreticulin (CRT) exposure on the cell surface under near-infrared (NIR) light irradiation. CRT, a marker for ICD, acts as an ‘eat me’ signal to stimulate the antigen presenting function of dendritic cells. As a result, a series of immunological responses are activated, including CD8+ T cell proliferation and cytotoxic cytokine secretion. In conclusion, ER-targeting PDT-PTT promoted ICD-associated immunotherapy through direct ROS-based ER stress and exhibited enhanced anti-tumour efficacy.

Suggested Citation

  • Wei Li & Jie Yang & Lihua Luo & Mengshi Jiang & Bing Qin & Hang Yin & Chunqi Zhu & Xiaoling Yuan & Junlei Zhang & Zhenyu Luo & Yongzhong Du & Qingpo Li & Yan Lou & Yunqing Qiu & Jian You, 2019. "Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11269-8
    DOI: 10.1038/s41467-019-11269-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11269-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11269-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minglun Liu & Yuncong Chen & Yan Guo & Hao Yuan & Tongxiao Cui & Shankun Yao & Suxing Jin & Huanhuan Fan & Chengjun Wang & Ran Xie & Weijiang He & Zijian Guo, 2022. "Golgi apparatus-targeted aggregation-induced emission luminogens for effective cancer photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Ke-Fei Xu & Shun-Yu Wu & Zihao Wang & Yuxin Guo & Ya-Xuan Zhu & Chengcheng Li & Bai-Hui Shan & Xinping Zhang & Xiaoyang Liu & Fu-Gen Wu, 2024. "Hyperbaric oxygen enhances tumor penetration and accumulation of engineered bacteria for synergistic photothermal immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11269-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.