IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10327-5.html
   My bibliography  Save this article

NREM sleep in the rodent neocortex and hippocampus reflects excitable dynamics

Author

Listed:
  • Daniel Levenstein

    (New York University
    NYU Neuroscience Institute)

  • György Buzsáki

    (New York University
    NYU Neuroscience Institute)

  • John Rinzel

    (New York University
    Courant Institute for Mathematical Sciences, New York University)

Abstract

During non-rapid eye movement (NREM) sleep, neuronal populations in the mammalian forebrain alternate between periods of spiking and inactivity. Termed the slow oscillation in the neocortex and sharp wave-ripples in the hippocampus, these alternations are often considered separately but are both crucial for NREM functions. By directly comparing experimental observations of naturally-sleeping rats with a mean field model of an adapting, recurrent neuronal population, we find that the neocortical alternations reflect a dynamical regime in which a stable active state is interrupted by transient inactive states (slow waves) while the hippocampal alternations reflect a stable inactive state interrupted by transient active states (sharp waves). We propose that during NREM sleep in the rodent, hippocampal and neocortical populations are excitable: each in a stable state from which internal fluctuations or external perturbation can evoke the stereotyped population events that mediate NREM functions.

Suggested Citation

  • Daniel Levenstein & György Buzsáki & John Rinzel, 2019. "NREM sleep in the rodent neocortex and hippocampus reflects excitable dynamics," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10327-5
    DOI: 10.1038/s41467-019-10327-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10327-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10327-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xinjia & Zhang, Yan & Gu, Tianyi & Zheng, Muhua & Xu, Kesheng, 2024. "Mixed synaptic modulation and inhibitory plasticity perform complementary roles in metastable transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    2. Krishna Choudhary & Sven Berberich & Thomas T. G. Hahn & James M. McFarland & Mayank R. Mehta, 2024. "Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10327-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.