IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09781-y.html
   My bibliography  Save this article

Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors

Author

Listed:
  • Matthias Paur

    (Vienna University of Technology, Institute of Photonics)

  • Aday J. Molina-Mendoza

    (Vienna University of Technology, Institute of Photonics)

  • Rudolf Bratschitsch

    (Institute of Physics and Center for Nanotechnology, University of Münster)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Thomas Mueller

    (Vienna University of Technology, Institute of Photonics)

Abstract

Light emission from higher-order correlated excitonic states has been recently reported in hBN-encapsulated monolayer WSe2 and WS2 upon optical excitation. These exciton complexes are found to be bound states of excitons residing in opposite valleys in momentum space, a promising feature that could be employed in valleytronics or other novel optoelectronic devices. However, electrically-driven light emission from such exciton species is still lacking. Here we report electroluminescence from bright and dark excitons, negatively charged trions and neutral and negatively charged biexcitons, generated by a pulsed gate voltage, in hexagonal boron nitride encapsulated monolayer WSe2 and WS2 with graphene as electrode. By tailoring the pulse parameters we are able to tune the emission intensity of the different exciton species in both materials. We find the electroluminescence from charged biexcitons and dark excitons to be as narrow as 2.8 meV.

Suggested Citation

  • Matthias Paur & Aday J. Molina-Mendoza & Rudolf Bratschitsch & Kenji Watanabe & Takashi Taniguchi & Thomas Mueller, 2019. "Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09781-y
    DOI: 10.1038/s41467-019-09781-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09781-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09781-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Francisco Gonzalez Marin & Dmitrii Unuchek & Zhe Sun & Cheol Yeon Cheon & Fedele Tagarelli & Kenji Watanabe & Takashi Taniguchi & Andras Kis, 2022. "Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Hugo Henck & Diego Mauro & Daniil Domaretskiy & Marc Philippi & Shahriar Memaran & Wenkai Zheng & Zhengguang Lu & Dmitry Shcherbakov & Chun Ning Lau & Dmitry Smirnov & Luis Balicas & Kenji Watanabe & , 2022. "Light sources with bias tunable spectrum based on van der Waals interface transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jack B. Muir & Jesper Levinsen & Stuart K. Earl & Mitchell A. Conway & Jared H. Cole & Matthias Wurdack & Rishabh Mishra & David J. Ing & Eliezer Estrecho & Yuerui Lu & Dmitry K. Efimkin & Jonathan O., 2022. "Interactions between Fermi polarons in monolayer WS2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Meng Zhao & Zhongjie Wang & Lu Liu & Chunzheng Wang & Cheng-Yen Liu & Fang Yang & Hua Wu & Chunlei Gao, 2024. "Atomic-scale visualization of the interlayer Rydberg exciton complex in moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Kai-Qiang Lin & Jonas D. Ziegler & Marina A. Semina & Javid V. Mamedov & Kenji Watanabe & Takashi Taniguchi & Sebastian Bange & Alexey Chernikov & Mikhail M. Glazov & John M. Lupton, 2022. "High-lying valley-polarized trions in 2D semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09781-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.