IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09730-9.html
   My bibliography  Save this article

Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol

Author

Listed:
  • P. Lloveras

    (Universitat Politècnica de Catalunya, Eduard Maristany, 10-14)

  • A. Aznar

    (Universitat Politècnica de Catalunya, Eduard Maristany, 10-14)

  • M. Barrio

    (Universitat Politècnica de Catalunya, Eduard Maristany, 10-14)

  • Ph. Negrier

    (Université de Bordeaux, LOMA, UMR 5798)

  • C. Popescu

    (CELLS-ALBA Synchrotron, E-08290 Cerdanyola del Vallès)

  • A. Planes

    (Universitat de Barcelona, Martí i Franquès 1)

  • L. Mañosa

    (Universitat de Barcelona, Martí i Franquès 1)

  • E. Stern-Taulats

    (University of Cambridge)

  • A. Avramenko

    (University of Cambridge)

  • N. D. Mathur

    (University of Cambridge)

  • X. Moya

    (University of Cambridge)

  • J.-Ll. Tamarit

    (Universitat Politècnica de Catalunya, Eduard Maristany, 10-14)

Abstract

There is currently great interest in replacing the harmful volatile hydrofluorocarbon fluids used in refrigeration and air-conditioning with solid materials that display magnetocaloric, electrocaloric or mechanocaloric effects. However, the field-driven thermal changes in all of these caloric materials fall short with respect to their fluid counterparts. Here we show that plastic crystals of neopentylglycol (CH3)2C(CH2OH)2 display extremely large pressure-driven thermal changes near room temperature due to molecular reconfiguration, that these changes outperform those observed in any type of caloric material, and that these changes are comparable with those exploited commercially in hydrofluorocarbons. Our discovery of colossal barocaloric effects in a plastic crystal should bring barocaloric materials to the forefront of research and development in order to achieve safe environmentally friendly cooling without compromising performance.

Suggested Citation

  • P. Lloveras & A. Aznar & M. Barrio & Ph. Negrier & C. Popescu & A. Planes & L. Mañosa & E. Stern-Taulats & A. Avramenko & N. D. Mathur & X. Moya & J.-Ll. Tamarit, 2019. "Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09730-9
    DOI: 10.1038/s41467-019-09730-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09730-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09730-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Hong Gao & Dong-Hui Wang & Feng-Xia Hu & Qing-Zhen Huang & You-Ting Song & Shuai-Kang Yuan & Zheng-Ying Tian & Bing-Jie Wang & Zi-Bing Yu & Hou-Bo Zhou & Yue Kan & Yuan Lin & Jing Wang & Yun-liang , 2024. "Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Sijia Yao & Pengfei Dang & Yiming Li & Yao Wang & Xi Zhang & Ye Liu & Suxin Qian & Dezhen Xue & Ya-Ling He, 2024. "Efficient roller-driven elastocaloric refrigerator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Jinyoung Seo & Ryan D. McGillicuddy & Adam H. Slavney & Selena Zhang & Rahil Ukani & Andrey A. Yakovenko & Shao-Liang Zheng & Jarad A. Mason, 2022. "Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Klara Lünser & Eyüp Kavak & Kübra Gürpinar & Baris Emre & Orhan Atakol & Enric Stern-Taulats & Marcel Porta & Antoni Planes & Pol Lloveras & Josep-Lluís Tamarit & Lluís Mañosa, 2024. "Elastocaloric, barocaloric and magnetocaloric effects in spin crossover polymer composite films," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Dai, Zhaofeng & She, Xiaohui & Wang, Chen & Ding, Yulong & Li, Yongliang & Zhang, Xiaosong & Zhao, Dongliang, 2024. "Dynamic simulation and performance analysis of a solid-state barocaloric refrigeration system," Energy, Elsevier, vol. 294(C).
    6. Shin-ichi Ohkoshi & Kosuke Nakagawa & Marie Yoshikiyo & Asuka Namai & Kenta Imoto & Yugo Nagane & Fangda Jia & Olaf Stefanczyk & Hiroko Tokoro & Junhao Wang & Takeshi Sugahara & Kouji Chiba & Kazuhiko, 2023. "Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09730-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.