IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09581-4.html
   My bibliography  Save this article

Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5

Author

Listed:
  • Menachem Katz

    (The Rockefeller University)

  • Francis Corson

    (Université Paris Diderot)

  • Wolfgang Keil

    (The Rockefeller University
    The Rockefeller University)

  • Anupriya Singhal

    (The Rockefeller University)

  • Andrea Bae

    (The Rockefeller University)

  • Yun Lu

    (The Rockefeller University)

  • Yupu Liang

    (The Rockefeller University)

  • Shai Shaham

    (The Rockefeller University)

Abstract

Glutamate is a major excitatory neurotransmitter, and impaired glutamate clearance following synaptic release promotes spillover, inducing extra-synaptic signaling. The effects of glutamate spillover on animal behavior and its neural correlates are poorly understood. We developed a glutamate spillover model in Caenorhabditis elegans by inactivating the conserved glial glutamate transporter GLT-1. GLT-1 loss drives aberrant repetitive locomotory reversal behavior through uncontrolled oscillatory release of glutamate onto AVA, a major interneuron governing reversals. Repetitive glutamate release and reversal behavior require the glutamate receptor MGL-2/mGluR5, expressed in RIM and other interneurons presynaptic to AVA. mgl-2 loss blocks oscillations and repetitive behavior; while RIM activation is sufficient to induce repetitive reversals in glt-1 mutants. Repetitive AVA firing and reversals require EGL-30/Gαq, an mGluR5 effector. Our studies reveal that cyclic autocrine presynaptic activation drives repetitive reversals following glutamate spillover. That mammalian GLT1 and mGluR5 are implicated in pathological motor repetition suggests a common mechanism controlling repetitive behaviors.

Suggested Citation

  • Menachem Katz & Francis Corson & Wolfgang Keil & Anupriya Singhal & Andrea Bae & Yun Lu & Yupu Liang & Shai Shaham, 2019. "Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09581-4
    DOI: 10.1038/s41467-019-09581-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09581-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09581-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung-Hwan Choi & Lauren Bayer Horowitz & Niels Ringstad, 2021. "Opponent vesicular transporters regulate the strength of glutamatergic neurotransmission in a C. elegans sensory circuit," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Francesca Coraggio & Mahak Bhushan & Spyridon Roumeliotis & Francesca Caroti & Carlo Bevilacqua & Robert Prevedel & Georgia Rapti, 2024. "Age-progressive interplay of HSP-proteostasis, ECM-cell junctions and biomechanics ensures C. elegans astroglial architecture," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09581-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.