IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09377-6.html
   My bibliography  Save this article

Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris

Author

Listed:
  • Michael S. Guzman

    (Washington University in St. Louis)

  • Karthikeyan Rengasamy

    (Washington University in St. Louis)

  • Michael M. Binkley

    (Washington University in St. Louis)

  • Clive Jones

    (Washington University in St. Louis)

  • Tahina Onina Ranaivoarisoa

    (Washington University in St. Louis)

  • Rajesh Singh

    (Washington University in St. Louis)

  • David A. Fike

    (Washington University in St. Louis)

  • J. Mark Meacham

    (Washington University in St. Louis
    Washington University in St. Louis)

  • Arpita Bose

    (Washington University in St. Louis)

Abstract

Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from solid-phase conductive substances such as metal oxides. EEU is performed by prevalent phototrophic bacterial genera, but the electron transfer pathways and the physiological electron sinks are poorly understood. Here we show that electrons enter the photosynthetic electron transport chain during EEU in the phototrophic bacterium Rhodopseudomonas palustris TIE-1. Cathodic electron flow is also correlated with a highly reducing intracellular redox environment. We show that reducing equivalents are used for carbon dioxide (CO2) fixation, which is the primary electron sink. Deletion of the genes encoding ruBisCO (the CO2-fixing enzyme of the Calvin-Benson-Bassham cycle) leads to a 90% reduction in EEU. This work shows that phototrophs can directly use solid-phase conductive substances for electron transfer, energy transduction, and CO2 fixation.

Suggested Citation

  • Michael S. Guzman & Karthikeyan Rengasamy & Michael M. Binkley & Clive Jones & Tahina Onina Ranaivoarisoa & Rajesh Singh & David A. Fike & J. Mark Meacham & Arpita Bose, 2019. "Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09377-6
    DOI: 10.1038/s41467-019-09377-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09377-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09377-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Na Chen & Na Du & Ruichen Shen & Tianpei He & Jing Xi & Jie Tan & Guangkai Bian & Yanbing Yang & Tiangang Liu & Weihong Tan & Lilei Yu & Quan Yuan, 2023. "Redox signaling-driven modulation of microbial biosynthesis and biocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Weiming Tu & Jiabao Xu & Ian P. Thompson & Wei E. Huang, 2023. "Engineering artificial photosynthesis based on rhodopsin for CO2 fixation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Chen, Han & Huang, Yu & Sha, Chong & Moradian, Jamile Mohammadi & Yong, Yang-Chun & Fang, Zhen, 2023. "Enzymatic carbon dioxide to formate: Mechanisms, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09377-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.