IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09126-9.html
   My bibliography  Save this article

Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve

Author

Listed:
  • Jongchan Park

    (Korea Advanced Institute of Science and Technology
    KAIST Institute for Health Science and Technology, KAIST)

  • KyeoReh Lee

    (Korea Advanced Institute of Science and Technology
    KAIST Institute for Health Science and Technology, KAIST)

  • YongKeun Park

    (Korea Advanced Institute of Science and Technology
    KAIST Institute for Health Science and Technology, KAIST
    Tomocube, Inc)

Abstract

Holographic displays can provide a 3D visual experience to multiple users without requiring special glasses. By precisely tailoring light fields, holographic displays could resemble realistic 3D scenes with full motion parallax and continuous depth cues. However, available holographic displays are unable to generate such scenes given practical limitations in wavefront modulation. In fact, the limited diffraction angle and small number of pixels of current wavefront modulators derive into a 3D scene with small size and narrow viewing angle. We propose a flat-panel wavefront modulator capable of displaying large dynamic holographic images with wide viewing angle. Specifically, an ultrahigh-capacity non-periodic photon sieve, which diffracts light at wide angles, is combined with an off-the-shelf liquid crystal display panel to generate holographic images. Besides wide viewing angle and large screen size, the wavefront modulator provides multi-colour projection and a small form factor, which suggests the possible implementation of holographic displays on thin devices.

Suggested Citation

  • Jongchan Park & KyeoReh Lee & YongKeun Park, 2019. "Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09126-9
    DOI: 10.1038/s41467-019-09126-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09126-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09126-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoli Jing & Ruizhe Zhao & Xin Li & Qiang Jiang & Chengzhi Li & Guangzhou Geng & Junjie Li & Yongtian Wang & Lingling Huang, 2022. "Single-shot 3D imaging with point cloud projection based on metadevice," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Ethan Tseng & Grace Kuo & Seung-Hwan Baek & Nathan Matsuda & Andrew Maimone & Florian Schiffers & Praneeth Chakravarthula & Qiang Fu & Wolfgang Heidrich & Douglas Lanman & Felix Heide, 2024. "Neural étendue expander for ultra-wide-angle high-fidelity holographic display," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Changwon Jang & Kiseung Bang & Minseok Chae & Byoungho Lee & Douglas Lanman, 2024. "Waveguide holography for 3D augmented reality glasses," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09126-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.