IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08982-9.html
   My bibliography  Save this article

Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction

Author

Listed:
  • Imilce A. Rodriguez-Fernandez

    (Buck Institute for Research on Aging
    Immunology Discovery, Genentech, Inc.)

  • Yanyan Qi

    (Buck Institute for Research on Aging)

  • Heinrich Jasper

    (Buck Institute for Research on Aging
    Immunology Discovery, Genentech, Inc.
    Leibniz Institute on Aging - Fritz Lipmann Institute)

Abstract

A decline in protein homeostasis (proteostasis) has been proposed as a hallmark of aging. Somatic stem cells (SCs) uniquely maintain their proteostatic capacity through mechanisms that remain incompletely understood. Here, we describe and characterize a ‘proteostatic checkpoint’ in Drosophila intestinal SCs (ISCs). Following a breakdown of proteostasis, ISCs coordinate cell cycle arrest with protein aggregate clearance by Atg8-mediated activation of the Nrf2-like transcription factor cap-n-collar C (CncC). CncC induces the cell cycle inhibitor Dacapo and proteolytic genes. The capacity to engage this checkpoint is lost in ISCs from aging flies, and we show that it can be restored by treating flies with an Nrf2 activator, or by over-expression of CncC or Atg8a. This limits age-related intestinal barrier dysfunction and can result in lifespan extension. Our findings identify a new mechanism by which somatic SCs preserve proteostasis, and highlight potential intervention strategies to maintain regenerative homeostasis.

Suggested Citation

  • Imilce A. Rodriguez-Fernandez & Yanyan Qi & Heinrich Jasper, 2019. "Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08982-9
    DOI: 10.1038/s41467-019-08982-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08982-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08982-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yadong Qi & Jiamin He & Yawen Zhang & Qiwei Ge & Qiwen Wang & Luyi Chen & Jilei Xu & Lan Wang & Xueqin Chen & Dingjiacheng Jia & Yifeng Lin & Chaochao Xu & Ying Zhang & Tongyao Hou & Jianmin Si & Shuj, 2023. "Heat-inactivated Bifidobacterium adolescentis ameliorates colon senescence through Paneth-like-cell-mediated stem cell activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08982-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.