IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08767-0.html
   My bibliography  Save this article

Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery

Author

Listed:
  • Xiaowei Shen

    (Soochow University)

  • Yutao Li

    (The University of Texas at Austin)

  • Tao Qian

    (Soochow University)

  • Jie Liu

    (Soochow University)

  • Jinqiu Zhou

    (Soochow University)

  • Chenglin Yan

    (Soochow University)

  • John B. Goodenough

    (The University of Texas at Austin)

Abstract

Lithium metal, the ideal anode material for rechargeable batteries, suffers from the inherent limitations of sensitivity to the humid atmosphere and dendrite growth. Herein, low-cost fabrication of a metallic-lithium anode that is stable in air and plated dendrite-free from an organic-liquid electrolyte solves four key problems that have plagued the development of large-scale Li-ion batteries for storage of electric power. Replacing the low-capacity carbon anode with a safe, dendrite-free lithium anode provides a fast charge while reducing the cost of fabrication of a lithium battery, and increasing the cycle life of a rechargeable cell by eliminating the liquid-electrolyte ethylene-carbonate additive used to form a solid-electrolyte interphase passivation layer on the anode that is unstable during cycling. This solution is accomplished by formation of a hydrophobic solid-electrolyte interphase on a metallic-lithium anode that allows for handling of the treated lithium anode membrane in a standard dry room during cell fabrication.

Suggested Citation

  • Xiaowei Shen & Yutao Li & Tao Qian & Jie Liu & Jinqiu Zhou & Chenglin Yan & John B. Goodenough, 2019. "Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08767-0
    DOI: 10.1038/s41467-019-08767-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08767-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08767-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pier Giorgio Schiavi & Flavia Carla dos Santos Martins Padoan & Pietro Altimari & Francesca Pagnanelli, 2020. "Cryo-Mechanical Treatment and Hydrometallurgical Process for Recycling Li-MnO 2 Primary Batteries with the Direct Production of LiMnPO 4 Nanoparticles," Energies, MDPI, vol. 13(15), pages 1-11, August.
    2. Zhenkang Wang & Haoqing Ji & Jinqiu Zhou & Yiwei Zheng & Jie Liu & Tao Qian & Chenglin Yan, 2023. "Exploiting nonaqueous self-stratified electrolyte systems toward large-scale energy storage," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shaozhen Huang & Zhibin Wu & Bernt Johannessen & Kecheng Long & Piao Qing & Pan He & Xiaobo Ji & Weifeng Wei & Yuejiao Chen & Libao Chen, 2023. "Interfacial friction enabling ≤ 20 μm thin free-standing lithium strips for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08767-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.