IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08629-9.html
   My bibliography  Save this article

Intrinsic valley Hall transport in atomically thin MoS2

Author

Listed:
  • Zefei Wu

    (the Hong Kong University of Science and Technology)

  • Benjamin T. Zhou

    (the Hong Kong University of Science and Technology)

  • Xiangbin Cai

    (the Hong Kong University of Science and Technology)

  • Patrick Cheung

    (University of Texas at Dallas)

  • Gui-Bin Liu

    (Beijing Institute of Technology)

  • Meizhen Huang

    (the Hong Kong University of Science and Technology)

  • Jiangxiazi Lin

    (the Hong Kong University of Science and Technology)

  • Tianyi Han

    (the Hong Kong University of Science and Technology)

  • Liheng An

    (the Hong Kong University of Science and Technology)

  • Yuanwei Wang

    (the Hong Kong University of Science and Technology)

  • Shuigang Xu

    (the Hong Kong University of Science and Technology)

  • Gen Long

    (the Hong Kong University of Science and Technology)

  • Chun Cheng

    (Southern University of Science and Technology)

  • Kam Tuen Law

    (the Hong Kong University of Science and Technology)

  • Fan Zhang

    (University of Texas at Dallas)

  • Ning Wang

    (the Hong Kong University of Science and Technology)

Abstract

Electrons hopping in two-dimensional honeycomb lattices possess a valley degree of freedom in addition to charge and spin. In the absence of inversion symmetry, these systems were predicted to exhibit opposite Hall effects for electrons from different valleys. Such valley Hall effects have been achieved only by extrinsic means, such as substrate coupling, dual gating, and light illuminating. Here we report the first observation of intrinsic valley Hall transport without any extrinsic symmetry breaking in the non-centrosymmetric monolayer and trilayer MoS2, evidenced by considerable nonlocal resistance that scales cubically with local resistance. Such a hallmark survives even at room temperature with a valley diffusion length at micron scale. By contrast, no valley Hall signal is observed in the centrosymmetric bilayer MoS2. Our work elucidates the topological origin of valley Hall effects and marks a significant step towards the purely electrical control of valley degree of freedom in topological valleytronics.

Suggested Citation

  • Zefei Wu & Benjamin T. Zhou & Xiangbin Cai & Patrick Cheung & Gui-Bin Liu & Meizhen Huang & Jiangxiazi Lin & Tianyi Han & Liheng An & Yuanwei Wang & Shuigang Xu & Gen Long & Chun Cheng & Kam Tuen Law , 2019. "Intrinsic valley Hall transport in atomically thin MoS2," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08629-9
    DOI: 10.1038/s41467-019-08629-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08629-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08629-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jiewei Chen & Yue Zhou & Jianmin Yan & Jidong Liu & Lin Xu & Jingli Wang & Tianqing Wan & Yuhui He & Wenjing Zhang & Yang Chai, 2022. "Room-temperature valley transistors for low-power neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Everton Arrighi & Viet-Hung Nguyen & Mario Di Luca & Gaia Maffione & Yuanzhuo Hong & Liam Farrar & Kenji Watanabe & Takashi Taniguchi & Dominique Mailly & Jean-Christophe Charlier & Rebeca Ribeiro-Pal, 2023. "Non-identical moiré twins in bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08629-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.