IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08308-9.html
   My bibliography  Save this article

Chemical fuel-driven living and transient supramolecular polymerization

Author

Listed:
  • Ankit Jain

    (Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR))

  • Shikha Dhiman

    (Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR))

  • Ashish Dhayani

    (Institute for Stem Cell Biology and Regenerative Medicine (InStem)
    SASTRA University)

  • Praveen K. Vemula

    (Institute for Stem Cell Biology and Regenerative Medicine (InStem))

  • Subi J. George

    (Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR))

Abstract

Temporal control over self-assembly process is a desirable trait in the quest towards adaptable and controllable materials. The ability to devise synthetic ways to control the growth, as well as decay of materials has long been a property which only the biological systems could perform seamlessly. A common synthetic strategy which works on the biological principles such as chemical fuel-driven control over temporal self-assembly profile has not been completely realized synthetically. Here we show, we filled this dearth by showing that a chemical fuel driven self-assembling system can not only be grown in a controlled manner, but it can also result in precise control over the assembly and disassembly kinetics. Herein, we elaborate strategies which clearly show that once a chemical fuel driven self-assembly is established it can be made receptive to multiple molecular cues such that the inherent growth and decay characteristics are programmed into the ensemble.

Suggested Citation

  • Ankit Jain & Shikha Dhiman & Ashish Dhayani & Praveen K. Vemula & Subi J. George, 2019. "Chemical fuel-driven living and transient supramolecular polymerization," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08308-9
    DOI: 10.1038/s41467-019-08308-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08308-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08308-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Lei & Zhaoyong Li & Guangcheng Wu & Lijie Zhang & Lu Tong & Tianyi Tong & Qiong Chen & Lingxiang Wang & Chenqi Ge & Yuxi Wei & Yuanjiang Pan & Andrew C.-H. Sue & Linjun Wang & Feihe Huang & Hao Li, 2022. "A trefoil knot self-templated through imination in water," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Richard Booth & Ignacio Insua & Sahnawaz Ahmed & Alicia Rioboo & Javier Montenegro, 2021. "Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08308-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.