IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-07979-0.html
   My bibliography  Save this article

Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices

Author

Listed:
  • Wei Wang

    (Politecnico di Milano and IUNET, Piazza L. da Vinci)

  • Ming Wang

    (Nanyang Technological University)

  • Elia Ambrosi

    (Politecnico di Milano and IUNET, Piazza L. da Vinci)

  • Alessandro Bricalli

    (Politecnico di Milano and IUNET, Piazza L. da Vinci)

  • Mario Laudato

    (Politecnico di Milano and IUNET, Piazza L. da Vinci)

  • Zhong Sun

    (Politecnico di Milano and IUNET, Piazza L. da Vinci)

  • Xiaodong Chen

    (Nanyang Technological University)

  • Daniele Ielmini

    (Politecnico di Milano and IUNET, Piazza L. da Vinci)

Abstract

Silver/copper-filament-based resistive switching memory relies on the formation and disruption of a metallic conductive filament (CF) with relatively large surface-to-volume ratio. The nanoscale CF can spontaneously break after formation, with a lifetime ranging from few microseconds to several months, or even years. Controlling and predicting the CF lifetime enables device engineering for a wide range of applications, such as non-volatile memory for data storage, tunable short/long term memory for synaptic neuromorphic computing, and fast selection devices for crosspoint arrays. However, conflictive explanations for the CF retention process are being proposed. Here we show that the CF lifetime can be described by a universal surface-limited self-diffusion mechanism of disruption of the metallic CF. The surface diffusion process provides a new perspective of ion transport mechanism at the nanoscale, explaining the broad range of reported lifetimes, and paving the way for material engineering of resistive switching device for memory and computing applications.

Suggested Citation

  • Wei Wang & Ming Wang & Elia Ambrosi & Alessandro Bricalli & Mario Laudato & Zhong Sun & Xiaodong Chen & Daniele Ielmini, 2019. "Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07979-0
    DOI: 10.1038/s41467-018-07979-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07979-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07979-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Yan Wang & Yue Gong & Shenming Huang & Xuechao Xing & Ziyu Lv & Junjie Wang & Jia-Qin Yang & Guohua Zhang & Ye Zhou & Su-Ting Han, 2021. "Memristor-based biomimetic compound eye for real-time collision detection," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Sebastian Jenderny & Rohit Gupta & Roshani Madurawala & Thomas Strunskus & Franz Faupel & Sören Kaps & Rainer Adelung & Karlheinz Ochs & Alexander Vahl, 2024. "Stimulus-dependent spiking and bursting behavior in memsensor circuits: experiment and wave digital modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(9), pages 1-11, September.
    4. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Konlechner, Roland & Allagui, Anis & Antonov, Vladimir N. & Yudin, Dmitry, 2023. "A superstatistics approach to the modelling of memristor current–voltage responses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    6. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07979-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.