IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i12d10.1038_s41558-019-0608-4.html
   My bibliography  Save this article

Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide

Author

Listed:
  • Jasper R. F. W. Leuven

    (Utrecht University)

  • Harm Jan Pierik

    (Utrecht University)

  • Maarten van der Vegt

    (Utrecht University)

  • Tjeerd J. Bouma

    (Utrecht University
    Royal Netherlands Institute for Sea Research)

  • Maarten G. Kleinhans

    (Utrecht University)

Abstract

The effects of sea-level rise on the future morphological functioning of estuaries are largely unknown because tidal amplitudes will change due to combined deepening of the estuary mouth and shifting amphidromic points at sea. Fluvial sediment supply is also globally decreasing, which hampers infilling necessary to maintain elevation relative to sea level. Here we model 36 estuaries worldwide with varying sizes, shapes and hydrodynamic characteristics, and find that small shallow estuaries and large deep estuaries respond in opposite ways to sea-level rise. Large estuaries are threatened by sediment starvation and therefore loss of intertidal area, particularly if tidal amplitude decreases at the mouth. In contrast, small estuaries face enhanced flood risks and are more sensitive to tidal amplification on sea-level-rise-induced deepening. Estuary widening can partly mitigate adverse effects. In large estuaries, expanded intertidal areas increase tidal prism and available erodible sediment for adaptation, whereas it slightly reduces tidal amplification in small estuaries.

Suggested Citation

  • Jasper R. F. W. Leuven & Harm Jan Pierik & Maarten van der Vegt & Tjeerd J. Bouma & Maarten G. Kleinhans, 2019. "Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide," Nature Climate Change, Nature, vol. 9(12), pages 986-992, December.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:12:d:10.1038_s41558-019-0608-4
    DOI: 10.1038/s41558-019-0608-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0608-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0608-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Soroush Kouhi & M. Reza Hashemi & Malcolm Spaulding & Tetsu Hara, 2022. "Modeling the impact of sea level rise on maximum water elevation during storm surge events: a closer look at coastal embayments," Climatic Change, Springer, vol. 171(3), pages 1-20, April.
    3. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:12:d:10.1038_s41558-019-0608-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.