IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i11d10.1038_s41558-019-0602-x.html
   My bibliography  Save this article

The effect of plant physiological responses to rising CO2 on global streamflow

Author

Listed:
  • Megan D. Fowler

    (University of California Irvine)

  • Gabriel J. Kooperman

    (University of Georgia Athens)

  • James T. Randerson

    (University of California Irvine)

  • Michael S. Pritchard

    (University of California Irvine)

Abstract

River flow statistics are expected to change as a result of increasing atmospheric CO2 but uncertainty in Earth system model projections is high. While this is partly driven by changing precipitation, with well-known Earth system model uncertainties, here we show that the influence of plant stomatal conductance feedbacks can cause equally large changes in regional flood extremes and even act as the main control on future low latitude streamflow. Over most tropical land masses, modern climate predictions suggest that plant physiological effects will boost streamflow, overwhelming opposing effects of soil drying driven by the effects of CO2 on atmospheric radiation, warming and rainfall redistribution. The relatively unknown uncertainties in representing eco-physiological processes must therefore be better constrained in land-surface models. To this end, we identify a distinct plant physiological fingerprint on annual peak, low and mean discharge throughout the tropics and identify river basins where physiological responses dominate radiative responses to rising CO2 in modern climate projections.

Suggested Citation

  • Megan D. Fowler & Gabriel J. Kooperman & James T. Randerson & Michael S. Pritchard, 2019. "The effect of plant physiological responses to rising CO2 on global streamflow," Nature Climate Change, Nature, vol. 9(11), pages 873-879, November.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:11:d:10.1038_s41558-019-0602-x
    DOI: 10.1038/s41558-019-0602-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0602-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0602-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Haoshan Wei & Yongqiang Zhang & Qi Huang & Francis H. S. Chiew & Jinkai Luan & Jun Xia & Changming Liu, 2024. "Direct vegetation response to recent CO2 rise shows limited effect on global streamflow," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:11:d:10.1038_s41558-019-0602-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.