IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v7y2017i5d10.1038_nclimate3278.html
   My bibliography  Save this article

Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks

Author

Listed:
  • Kyle C. Armour

    (University of Washington)

Abstract

Estimates of equilibrium climate sensitivity differ depending on the method of calculation. This study shows estimates based on the historical energy budget are low as climate feedbacks vary with time and the bias depends on the sensitivity of the system.

Suggested Citation

  • Kyle C. Armour, 2017. "Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks," Nature Climate Change, Nature, vol. 7(5), pages 331-335, May.
  • Handle: RePEc:nat:natcli:v:7:y:2017:i:5:d:10.1038_nclimate3278
    DOI: 10.1038/nclimate3278
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate3278
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate3278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Edward Callies & Darrel Moellendorf, 2021. "Assessing climate policies: Catastrophe avoidance and the right to sustainable development," Politics, Philosophy & Economics, , vol. 20(2), pages 127-150, May.
    2. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    3. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    4. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Phillips, Peter C.B. & Leirvik, Thomas & Storelvmo, Trude, 2020. "Econometric estimates of Earth’s transient climate sensitivity," Journal of Econometrics, Elsevier, vol. 214(1), pages 6-32.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:5:d:10.1038_nclimate3278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.