IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v7y2017i4d10.1038_nclimate3234.html
   My bibliography  Save this article

The contribution of solar brightening to the US maize yield trend

Author

Listed:
  • Matthijs Tollenaar
  • Jon Fridgen

    (Advanced Agrilytics)

  • Priyanka Tyagi

    (North Carolina State University)

  • Paul W. Stackhouse Jr

    (NASA Langley Research Center)

  • Saratha Kumudini

Abstract

Gains in maize yield from the US Corn Belt have been attributed to agricultural technologies. A study now shows that solar brightening was responsible for approximately 27% of yield growth from 1984 to 2013.

Suggested Citation

  • Matthijs Tollenaar & Jon Fridgen & Priyanka Tyagi & Paul W. Stackhouse Jr & Saratha Kumudini, 2017. "The contribution of solar brightening to the US maize yield trend," Nature Climate Change, Nature, vol. 7(4), pages 275-278, April.
  • Handle: RePEc:nat:natcli:v:7:y:2017:i:4:d:10.1038_nclimate3234
    DOI: 10.1038/nclimate3234
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate3234
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate3234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Ziren & Luo, Ning & Guo, Jiameng & Xu, Jie & Wang, Pu & Meng, Qingfeng, 2024. "Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    3. Paolo Agnolucci & Vincenzo De Lipsis, 2020. "Long-run trend in agricultural yield and climatic factors in Europe," Climatic Change, Springer, vol. 159(3), pages 385-405, April.
    4. Tian Han & Ying Wang & Xiao Wang & Kang Chen & Huaiwu Peng & Zhenxin Gao & Lanxin Cui & Wentong Sun & Qinke Peng, 2023. "Mixed Multi-Pattern Regression for DNI Prediction in Arid Desert Areas," Sustainability, MDPI, vol. 15(17), pages 1-16, August.
    5. Qimeng Pan & Lysa Porth & Hong Li, 2022. "Assessing the Effectiveness of the Actuaries Climate Index for Estimating the Impact of Extreme Weather on Crop Yield and Insurance Applications," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    6. Junjun Cao & Guoyong Leng & Peng Yang & Qingbo Zhou & Wenbin Wu, 2022. "Variability in Crop Response to Spatiotemporal Variation in Climate in China, 1980–2014," Land, MDPI, vol. 11(8), pages 1-13, July.
    7. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    8. Yuhe Ji & Guangsheng Zhou & Qijin He & Lixia Wang, 2018. "The Effect of Climate Change on Spring Maize ( Zea mays L.) Suitability across China," Sustainability, MDPI, vol. 10(10), pages 1-10, October.
    9. Shan Yu & Aaron M. Kusmec & Li Wang & Dan Nettleton, 2023. "Fusion Learning of Functional Linear Regression with Application to Genotype-by-Environment Interaction Studies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 401-422, September.
    10. Magdalena Cornejo & Nicolás Merener & Ezequiel Merovich, 2024. "Extreme Dry Spells and Larger Storms in the U.S. Midwest Raise Crop Prices," Working Papers 303, Red Nacional de Investigadores en Economía (RedNIE).
    11. Ortiz-Bobea, Ariel & Tack, Jesse B., 2018. "Another genetic yield revolution is needed to offset climate change effects on U.S. maize," 2018 Annual Meeting, August 5-7, Washington, D.C. 274380, Agricultural and Applied Economics Association.
    12. Paulo M. M. Rodrigues & Mirjam Salish & Nazarii Salish, 2024. "Saving for sunny days: The impact of climate (change) on consumer prices in the euro area," Papers 2401.03740, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:4:d:10.1038_nclimate3234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.