IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v7y2017i12d10.1038_s41558-017-0007-7.html
   My bibliography  Save this article

Increased rainfall volume from future convective storms in the US

Author

Listed:
  • Andreas F. Prein

    (National Center for Atmospheric Research (NCAR))

  • Changhai Liu

    (National Center for Atmospheric Research (NCAR))

  • Kyoko Ikeda

    (National Center for Atmospheric Research (NCAR))

  • Stanley B. Trier

    (National Center for Atmospheric Research (NCAR))

  • Roy M. Rasmussen

    (National Center for Atmospheric Research (NCAR))

  • Greg J. Holland

    (National Center for Atmospheric Research (NCAR))

  • Martyn P. Clark

    (National Center for Atmospheric Research (NCAR))

Abstract

Mesoscale convective system (MCS)-organized convective storms with a size of ~100 km have increased in frequency and intensity in the USA over the past 35 years 1 , causing fatalities and economic losses 2 . However, their poor representation in traditional climate models hampers the understanding of their change in the future 3 . Here, a North American-scale convection-permitting model which is able to realistically simulate MSCs 4 is used to investigate their change by the end-of-century under RCP8.5 (ref. 5 ). A storm-tracking algorithm 6 indicates that intense summertime MCS frequency will more than triple in North America. Furthermore, the combined effect of a 15–40% increase in maximum precipitation rates and a significant spreading of regions impacted by heavy precipitation results in up to 80% increases in the total MCS precipitation volume, focussed in a 40 km radius around the storm centre. These typically neglected increases substantially raise future flood risk. Current investments in long-lived infrastructures, such as flood protection and water management systems, need to take these changes into account to improve climate-adaptation practices.

Suggested Citation

  • Andreas F. Prein & Changhai Liu & Kyoko Ikeda & Stanley B. Trier & Roy M. Rasmussen & Greg J. Holland & Martyn P. Clark, 2017. "Increased rainfall volume from future convective storms in the US," Nature Climate Change, Nature, vol. 7(12), pages 880-884, December.
  • Handle: RePEc:nat:natcli:v:7:y:2017:i:12:d:10.1038_s41558-017-0007-7
    DOI: 10.1038/s41558-017-0007-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-017-0007-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-017-0007-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borsky, Stefan & Unterberger, Christian, 2019. "Bad weather and flight delays: The impact of sudden and slow onset weather events," Economics of Transportation, Elsevier, vol. 18(C), pages 10-26.
    2. Anamaria Bukvic & Julia Gohlke & Aishwarya Borate & Jessica Suggs, 2018. "Aging in Flood-Prone Coastal Areas: Discerning the Health and Well-Being Risk for Older Residents," IJERPH, MDPI, vol. 15(12), pages 1-25, December.
    3. Choi, Eseul & DePaula, Guilherme & Kyveryga, Peter & Fey, Suzanne, 2024. "The Trade-off between Yield and Nitrogen Pollution under Excessive Rainfall: Evidence from On-farm Field Experiments in Iowa," ISU General Staff Papers 202402222018560000, Iowa State University, Department of Economics.
    4. Paul Kirshen & Mark Borrelli & Jarrett Byrnes & Robert Chen & Lucy Lockwood & Chris Watson & Kimberly Starbuck & Jack Wiggin & Allison Novelly & Kristin Uiterwyk & Kelli Thurson & Brett McMann & Carly, 2020. "Integrated assessment of storm surge barrier systems under present and future climates and comparison to alternatives: a case study of Boston, USA," Climatic Change, Springer, vol. 162(2), pages 445-464, September.
    5. Bradt, Jacob T. & Kousky, Carolyn & Wing, Oliver E.J., 2021. "Voluntary purchases and adverse selection in the market for flood insurance," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:12:d:10.1038_s41558-017-0007-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.