IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v4y2014i7d10.1038_nclimate2285.html
   My bibliography  Save this article

A better currency for investing in a sustainable future

Author

Listed:
  • Michael Carbajales-Dale

    (Stanford University)

  • Charles J. Barnhart

    (Global Climate and Energy Project, Stanford University)

  • Adam R. Brandt

    (Stanford University)

  • Sally M. Benson

    (Stanford University
    Global Climate and Energy Project, Stanford University)

Abstract

Net energy analysis should be a critical energy policy tool. We identify five critical themes for realizing a low-carbon, sustainable energy future and highlight the key perspective that net energy analysis provides.

Suggested Citation

  • Michael Carbajales-Dale & Charles J. Barnhart & Adam R. Brandt & Sally M. Benson, 2014. "A better currency for investing in a sustainable future," Nature Climate Change, Nature, vol. 4(7), pages 524-527, July.
  • Handle: RePEc:nat:natcli:v:4:y:2014:i:7:d:10.1038_nclimate2285
    DOI: 10.1038/nclimate2285
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate2285
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate2285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Kittner, Noah & Gheewala, Shabbir H. & Kammen, Daniel M., 2016. "Energy return on investment (EROI) of mini-hydro and solar PV systems designed for a mini-grid," Renewable Energy, Elsevier, vol. 99(C), pages 410-419.
    3. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    4. Chen, Yingchao & Feng, Lianyong & Wang, Jianliang & Höök, Mikael, 2017. "Emergy-based energy return on investment method for evaluating energy exploitation," Energy, Elsevier, vol. 128(C), pages 540-549.
    5. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    6. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    7. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    8. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    9. Kevin Pahud & Greg de Temmerman, 2022. "Overview of the EROI, a tool to measure energy availability through the energy transition," Post-Print hal-03780085, HAL.
    10. Hasan, Mahmudul & Langrish, Timothy Alan Granville, 2016. "Time-valued net energy analysis of solar kilns for wood drying: A solar thermal application," Energy, Elsevier, vol. 96(C), pages 415-426.
    11. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2021. "Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California," Energies, MDPI, vol. 14(16), pages 1-19, August.
    12. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    13. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    14. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    15. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    16. Marco Raugei & Mashael Kamran & Allan Hutchinson, 2020. "A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid," Energies, MDPI, vol. 13(9), pages 1-28, May.
    17. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    18. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    19. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:4:y:2014:i:7:d:10.1038_nclimate2285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.