IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v2y2012i2d10.1038_nclimate1344.html
   My bibliography  Save this article

Changes in hail and flood risk in high-resolution simulations over Colorado's mountains

Author

Listed:
  • Kelly Mahoney

    (University Corporation for Atmospheric Research, (Postdocs Applying Climate Expertise Fellowship Program/NOAA Earth System Research Laboratory and US Bureau of Reclamation))

  • Michael A. Alexander

    (NOAA/Earth System Research Laboratory)

  • Gregory Thompson

    (National Center for Atmospheric Research)

  • Joseph J. Barsugli

    (NOAA/Cooperative Institute for Research in Environmental Sciences Western Water Assessment, University of Colorado)

  • James D. Scott

    (NOAA/Earth System Research Laboratory, and CIRES Climate Diagnostics Center)

Abstract

The effect of a warming climate on hailstorm frequency and intensity is largely unknown. Global climate models have too coarse resolution to simulate hailstorms explicitly; thus it is unclear if a warmer climate will change hailstorm frequency and intensity, and if so, whether such events will become more likely through intensified thunderstorms or less likely owing to overall warmer conditions. Here we investigate hail generation and maintenance for warm-season extreme precipitation events in Colorado, USA, for both present-day and projected future climates using high-resolution model simulations capable of resolving hailstorms. Most simulations indicate a near-elimination of hail at the surface in future simulations for this region, despite more intense future storms and significantly larger amounts of hail generated in-cloud. An increase in the height of the environmental melting level due to climate warming is found to be the primary reason for the disappearance of surface hail, as the warmer atmosphere increases the melting of frozen precipitation. A decrease in future surface hail at high-elevation locations may imply potential changes in both hail damage and flood risk.

Suggested Citation

  • Kelly Mahoney & Michael A. Alexander & Gregory Thompson & Joseph J. Barsugli & James D. Scott, 2012. "Changes in hail and flood risk in high-resolution simulations over Colorado's mountains," Nature Climate Change, Nature, vol. 2(2), pages 125-131, February.
  • Handle: RePEc:nat:natcli:v:2:y:2012:i:2:d:10.1038_nclimate1344
    DOI: 10.1038/nclimate1344
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1344
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vigani, Mauro & Khafagy, Amr & Berry, Robert, 2024. "Public spending for agricultural risk management: Land use, regional welfare and intra-subsidy substitution," Food Policy, Elsevier, vol. 123(C).
    2. Derya Deniz & Erin E. Arneson & Abbie B. Liel & Shideh Dashti & Amy N. Javernick-Will, 2017. "Flood loss models for residential buildings, based on the 2013 Colorado floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 977-1003, January.
    3. Vittorio Gensini & Thomas Mote, 2015. "Downscaled estimates of late 21st century severe weather from CCSM3," Climatic Change, Springer, vol. 129(1), pages 307-321, March.
    4. F. G. Santeramo & B. K. Goodwin & F. Adinolfi & F. Capitanio, 2016. "Farmer Participation, Entry and Exit Decisions in the Italian Crop Insurance Programme," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 639-657, September.
    5. Adam D. McCurdy & William R. Travis, 2017. "Simulated climate adaptation in stormwater systems: evaluating the efficiency of adaptation strategies," Environment Systems and Decisions, Springer, vol. 37(2), pages 214-229, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:2:y:2012:i:2:d:10.1038_nclimate1344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.