IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v14y2024i7d10.1038_s41558-024-02031-0.html
   My bibliography  Save this article

Novel temperatures are already widespread beneath the world’s tropical forest canopies

Author

Listed:
  • Brittany T. Trew

    (University of Exeter
    RSPB Centre for Conservation Science)

  • David P. Edwards

    (University of Cambridge)

  • Alexander C. Lees

    (Manchester Metropolitan University)

  • David H. Klinges

    (University of Florida)

  • Regan Early

    (University of Exeter)

  • Martin Svátek

    (Mendel University in Brno)

  • Roman Plichta

    (Czech University of Life Sciences Prague)

  • Radim Matula

    (Czech University of Life Sciences Prague)

  • Joseph Okello

    (Mountains of the Moon University)

  • Armin Niessner

    (University of Applied Forest Sciences)

  • Matti Barthel

    (ETH Zurich)

  • Johan Six

    (ETH Zurich)

  • Eduardo E. Maeda

    (University of Helsinki
    Finnish Meteorological Institute)

  • Jos Barlow

    (Lancaster University)

  • Rodrigo Oliveria Nascimento

    (Universidade Federal do Pará)

  • Erika Berenguer

    (Lancaster University
    University of Oxford)

  • Joice Ferreira

    (Embrapa Amazônia Oriental)

  • Jhonatan Sallo-Bravo

    (Universidad Nacional de San Antonio Abad del Cusco)

  • Ilya M. D. Maclean

    (University of Exeter)

Abstract

Tropical forest biodiversity is potentially at high risk from climate change, but most species reside within or below the canopy, where they are buffered from extreme temperatures. Here, by modelling the hourly below-canopy climate conditions of 300,000 tropical forest locations globally between 1990 and 2019, we show that recent small increases in below-canopy temperature (

Suggested Citation

  • Brittany T. Trew & David P. Edwards & Alexander C. Lees & David H. Klinges & Regan Early & Martin Svátek & Roman Plichta & Radim Matula & Joseph Okello & Armin Niessner & Matti Barthel & Johan Six & E, 2024. "Novel temperatures are already widespread beneath the world’s tropical forest canopies," Nature Climate Change, Nature, vol. 14(7), pages 753-759, July.
  • Handle: RePEc:nat:natcli:v:14:y:2024:i:7:d:10.1038_s41558-024-02031-0
    DOI: 10.1038/s41558-024-02031-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-024-02031-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-024-02031-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maclean, Ilya M.D. & Klinges, David H., 2021. "Microclimc: A mechanistic model of above, below and within-canopy microclimate," Ecological Modelling, Elsevier, vol. 451(C).
    2. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    3. Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.
    4. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Peter Bossew & Giorgia Cinelli & Giancarlo Ciotoli & Quentin G. Crowley & Marc De Cort & Javier Elío Medina & Valeria Gruber & Eric Petermann & Tore Tollefsen, 2020. "Development of a Geogenic Radon Hazard Index—Concept, History, Experiences," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    6. Ravic Nijbroek & Kristin Piikki & Mats Söderström & Bas Kempen & Katrine G. Turner & Simeon Hengari & John Mutua, 2018. "Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    7. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    8. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    9. Yu Feng & Zhenzhong Zeng & Timothy D. Searchinger & Alan D. Ziegler & Jie Wu & Dashan Wang & Xinyue He & Paul R. Elsen & Philippe Ciais & Rongrong Xu & Zhilin Guo & Liqing Peng & Yiheng Tao & Dominick, 2022. "Doubling of annual forest carbon loss over the tropics during the early twenty-first century," Nature Sustainability, Nature, vol. 5(5), pages 444-451, May.
    10. Amintas Brandão Jr. & Lisa Rausch & América Paz Durán & Ciniro Costa Jr. & Seth A. Spawn & Holly K. Gibbs, 2020. "Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    11. Bughici, Theodor & Skaggs, Todd H. & Corwin, Dennis L. & Scudiero, Elia, 2022. "Ensemble HYDRUS-2D modeling to improve apparent electrical conductivity sensing of soil salinity under drip irrigation," Agricultural Water Management, Elsevier, vol. 272(C).
    12. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Dossou-Yovo, E. R. & Zwart, Sander J. & Kouyate, A. & Ouedraogo, I. & Bakare, O., 2019. "Predictors of drought in inland valley landscapes and enabling factors for rice farmers’ mitigation measures in the Sudan-Sahel Zone," Papers published in Journals (Open Access), International Water Management Institute, pages 11(1):1-17..
    14. Hadi Eskandari Damaneh & Hassan Khosravi & Khalil Habashi & Hamed Eskandari Damaneh & John P. Tiefenbacher, 2022. "The impact of land use and land cover changes on soil erosion in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2185-2205, February.
    15. Warth, Benjamin & Marohn, Carsten & Asch, Folkard, 2021. "Improved simulation of plant-animal interactions in African savannas with the extended land use change model LUCIA," Ecological Modelling, Elsevier, vol. 446(C).
    16. Dari, Jacopo & Quintana-Seguí, Pere & Morbidelli, Renato & Saltalippi, Carla & Flammini, Alessia & Giugliarelli, Elena & Escorihuela, María José & Stefan, Vivien & Brocca, Luca, 2022. "Irrigation estimates from space: Implementation of different approaches to model the evapotranspiration contribution within a soil-moisture-based inversion algorithm," Agricultural Water Management, Elsevier, vol. 265(C).
    17. Monteleone, Beatrice & Borzí, Iolanda & Bonaccorso, Brunella & Martina, Mario, 2022. "Developing stage-specific drought vulnerability curves for maize: The case study of the Po River basin," Agricultural Water Management, Elsevier, vol. 269(C).
    18. Yang, Chenyao & Fraga, Helder & van Ieperen, Wim & Santos, João A., 2020. "Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal," Agricultural Systems, Elsevier, vol. 182(C).
    19. Mirza Čengić & Zoran J. N. Steinmann & Pierre Defourny & Jonathan C. Doelman & Céline Lamarche & Elke Stehfest & Aafke M. Schipper & Mark A. J. Huijbregts, 2023. "Global Maps of Agricultural Expansion Potential at a 300 m Resolution," Land, MDPI, vol. 12(3), pages 1-13, February.
    20. Omaid Najmuddin & Xiangzheng Deng & Ruchira Bhattacharya, 2018. "The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin, Afghanistan," Sustainability, MDPI, vol. 10(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:14:y:2024:i:7:d:10.1038_s41558-024-02031-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.