IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i6d10.1038_s41558-023-01667-8.html
   My bibliography  Save this article

Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin

Author

Listed:
  • Kathryn L. Gunn

    (CSIRO Environment
    University of Southampton)

  • Stephen R. Rintoul

    (CSIRO Environment
    University of Tasmania)

  • Matthew H. England

    (University of New South Wales)

  • Melissa M. Bowen

    (University of Auckland)

Abstract

Dense water formed near Antarctica, known as Antarctic bottom water (AABW), drives deep ocean circulation and supplies oxygen to the abyssal ocean. Observations show that AABW has freshened and contracted since the 1960s, yet the drivers of these changes and their impact remain uncertain. Here, using observations from the Australian Antarctic Basin, we show that AABW transport reduced by 4.0 Sv between 1994 and 2009, during a period of strong freshening on the continental shelf. An increase in shelf water salinity between 2009 and 2018, previously linked to transient climate variability, drove a partial recovery (2.2 Sv) of AABW transport. Over the full period (1994 to 2017), the net slowdown of −0.8 ± 0.5 Sv decade−1 thinned well-oxygenated layers, driving deoxygenation of −3 ± 2 μmol kg−1 decade−1. These findings demonstrate that freshening of Antarctic shelf waters weakens the lower limb of the abyssal overturning circulation and reduces deep ocean oxygen content.

Suggested Citation

  • Kathryn L. Gunn & Stephen R. Rintoul & Matthew H. England & Melissa M. Bowen, 2023. "Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin," Nature Climate Change, Nature, vol. 13(6), pages 537-544, June.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:6:d:10.1038_s41558-023-01667-8
    DOI: 10.1038/s41558-023-01667-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-023-01667-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-023-01667-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Una Kim Miller & Christopher J. Zappa & Arnold L. Gordon & Seung-Tae Yoon & Craig Stevens & Won Sang Lee, 2024. "High Salinity Shelf Water production rates in Terra Nova Bay, Ross Sea from high-resolution salinity observations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Zhi Li & Matthew H. England & Sjoerd Groeskamp, 2023. "Recent acceleration in global ocean heat accumulation by mode and intermediate waters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Ann Holbourn & Wolfgang Kuhnt & Denise K. Kulhanek & Gregory Mountain & Yair Rosenthal & Takuya Sagawa & Julia Lübbers & Nils Andersen, 2024. "Re-organization of Pacific overturning circulation across the Miocene Climate Optimum," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Zhaoru Zhang & Chuan Xie & Pasquale Castagno & Matthew H. England & Xiaoqiao Wang & Michael S. Dinniman & Alessandro Silvano & Chuning Wang & Lei Zhou & Xichen Li & Meng Zhou & Giorgio Budillon, 2024. "Evidence for large-scale climate forcing of dense shelf water variability in the Ross Sea," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:6:d:10.1038_s41558-023-01667-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.