IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v12y2022i9d10.1038_s41558-022-01443-0.html
   My bibliography  Save this article

Climate change threatens terrestrial water storage over the Tibetan Plateau

Author

Listed:
  • Xueying Li

    (Tsinghua University)

  • Di Long

    (Tsinghua University)

  • Bridget R. Scanlon

    (The University of Texas at Austin)

  • Michael E. Mann

    (Penn State University)

  • Xingdong Li

    (Tsinghua University)

  • Fuqiang Tian

    (Tsinghua University)

  • Zhangli Sun

    (Tsinghua University)

  • Guangqian Wang

    (Tsinghua University)

Abstract

Terrestrial water storage (TWS) over the Tibetan Plateau, a major global water tower, is crucial in determining water transport and availability to a large downstream Asian population. Climate change impacts on historical and future TWS changes, however, are not well quantified. Here we used bottom-up and top-down approaches to quantify a significant TWS decrease (10.2 Gt yr–1) over the Tibetan Plateau in recent decades (2002–2017), reflecting competing effects of glacier retreat, lake expansion and subsurface water loss. Despite the weakened trends in projected TWS, it shows large declines under a mid-range carbon emissions scenario by the mid-twenty-first century. Excess water-loss projections for the Amu Darya and Indus basins present a critical water resource threat, indicating declines of 119% and 79% in water-supply capacity, respectively. Our study highlights these two hotspots as being at risk from climate change, informing adaptation strategies for these highly vulnerable regions.

Suggested Citation

  • Xueying Li & Di Long & Bridget R. Scanlon & Michael E. Mann & Xingdong Li & Fuqiang Tian & Zhangli Sun & Guangqian Wang, 2022. "Climate change threatens terrestrial water storage over the Tibetan Plateau," Nature Climate Change, Nature, vol. 12(9), pages 801-807, September.
  • Handle: RePEc:nat:natcli:v:12:y:2022:i:9:d:10.1038_s41558-022-01443-0
    DOI: 10.1038/s41558-022-01443-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-022-01443-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-022-01443-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Zichun & Fu, Congsheng & Wu, Huawu & Wu, Haohao & Zhang, Haixia & Cao, Yang & Xia, Ye, 2023. "What influences does grazing bring about to stream nutrient fluxes in alpine meadows?," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Yenan Wu & Di Long & Upmanu Lall & Bridget R. Scanlon & Fuqiang Tian & Xudong Fu & Jianshi Zhao & Jianyun Zhang & Hao Wang & Chunhong Hu, 2022. "Reconstructed eight-century streamflow in the Tibetan Plateau reveals contrasting regional variability and strong nonstationarity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Haiting Gu & Yue-Ping Xu & Li Liu & Jingkai Xie & Lu Wang & Suli Pan & Yuxue Guo, 2023. "Seasonal catchment memory of high mountain rivers in the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Xiaodong Huang & Xiaoqian Liu & Ying Wang, 2024. "Spatio-Temporal Variations and Drivers of Carbon Storage in the Tibetan Plateau under SSP-RCP Scenarios Based on the PLUS-InVEST-GeoDetector Model," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    5. Luwei Wang & Wenzhe Xu & Xuan Xue & Haowei Wang & Zhi Li & Yang Wang, 2024. "Analysis of Spatial and Temporal Changes and Drivers of Urban Sprawl in Xinjiang Based on Integrated DMSP-OLS and NPP-VIIRS Data," Land, MDPI, vol. 13(5), pages 1-26, April.
    6. Lei Xu & Le Yang & Cai Lu & Qing Zeng & Shengling Zhou & Yongbing Yang & Shansi Liu & Zhaxijie Li & Yifei Jia & Guangchun Lei, 2023. "Impacts of Environmental Factors on Over-Wintering Aquatic Bird Communities in Yamzho Yumco Lake, China," Sustainability, MDPI, vol. 16(1), pages 1-13, December.
    7. Huping Wang & Zhao Wang & Haikui Yin & Chao Jin & Xiaogang Zhang & Langtao Liu, 2023. "CO 2 Flow Characteristics in Macro-Scale Coal Sample: Effect of CO 2 Injection Pressure and Buried Depth," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    8. Zhili Wang & Yadong Lei & Huizheng Che & Bo Wu & Xiaoye Zhang, 2024. "Aerosol forcing regulating recent decadal change of summer water vapor budget over the Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:12:y:2022:i:9:d:10.1038_s41558-022-01443-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.