IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i4d10.1038_s41558-021-01007-8.html
   My bibliography  Save this article

No projected global drylands expansion under greenhouse warming

Author

Listed:
  • Alexis Berg

    (Harvard University)

  • Kaighin A. McColl

    (Harvard University
    Harvard University)

Abstract

Drylands, comprising land regions characterized by water-limited, sparse vegetation, have commonly been projected to expand globally under climate warming. Such projections, however, rely on an atmospheric proxy for drylands, the aridity index, which has recently been shown to yield qualitatively incorrect projections of various components of the terrestrial water cycle. Here, we use an alternative index of drylands, based directly on relevant ecohydrological variables, and compare projections of both indices in Coupled Model Intercomparison Project Phase 5 climate models as well as Dynamic Global Vegetation Models. The aridity index overestimates simulated ecohydrological index changes. This divergence reflects different index sensitivities to hydroclimate change and opposite responses to the physiological effect on vegetation of increasing atmospheric CO2. Atmospheric aridity is thus not an accurate proxy of the future extent of drylands. Despite greater uncertainties than in atmospheric projections, climate model ecohydrological projections indicate no global drylands expansion under greenhouse warming, contrary to previous claims based on atmospheric aridity.

Suggested Citation

  • Alexis Berg & Kaighin A. McColl, 2021. "No projected global drylands expansion under greenhouse warming," Nature Climate Change, Nature, vol. 11(4), pages 331-337, April.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:4:d:10.1038_s41558-021-01007-8
    DOI: 10.1038/s41558-021-01007-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-01007-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-01007-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niemeyer, Julia & Vale, Mariana M., 2022. "Obstacles and opportunities for implementing a policy-mix for ecosystem-based adaptation to climate change in Brazil's Caatinga," Land Use Policy, Elsevier, vol. 122(C).
    2. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Hsin Hsu & Paul A. Dirmeyer, 2023. "Soil moisture-evaporation coupling shifts into new gears under increasing CO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Helder F. P. Araujo & Célia C. C. Machado & Ana Carolina Flores Alves & Mônica Costa Lima & José Maria Cardoso Silva, 2022. "Vegetation productivity under climate change depends on landscape complexity in tropical drylands," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:4:d:10.1038_s41558-021-01007-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.