IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i12d10.1038_s41558-021-01196-2.html
   My bibliography  Save this article

Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities

Author

Listed:
  • Jun Wang

    (Chinese Academy of Sciences)

  • Yang Chen

    (Chinese Academy of Meteorological Sciences)

  • Weilin Liao

    (Sun Yat-sen University)

  • Guanhao He

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention)

  • Simon F. B. Tett

    (The University of Edinburgh)

  • Zhongwei Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Panmao Zhai

    (Chinese Academy of Meteorological Sciences)

  • Jinming Feng

    (Chinese Academy of Sciences)

  • Wenjun Ma

    (Jinan University)

  • Cunrui Huang

    (Tsinghua University)

  • Yamin Hu

    (Guangdong Climate Center)

Abstract

Urban areas are experiencing strongly increasing hot temperature extremes. However, these urban heat events have seldom been the focus of traditional detection and attribution analysis designed for regional to global changes. Here we show that compound (day–night sustained) hot extremes are more dangerous than solely daytime or nighttime heat, especially to female and older urban residents. Urban compound hot extremes across eastern China have increased by 1.76 days per decade from 1961 to 2014 with fingerprints of urban expansion and anthropogenic emissions detected by a stepwise detection and attribution method. Their attributable fractions are estimated as 0.51 (urbanization), 1.63 (greenhouse gases) and −0.54 (other anthropogenic forcings) days per decade. Future emissions and urbanization would make these compound events two to five times more frequent (2090s versus 2010s), leading to a threefold-to-sixfold growth in urban population exposure. Our findings call for tailored adaptation planning against rapidly growing health threats from compound heat in cities.

Suggested Citation

  • Jun Wang & Yang Chen & Weilin Liao & Guanhao He & Simon F. B. Tett & Zhongwei Yan & Panmao Zhai & Jinming Feng & Wenjun Ma & Cunrui Huang & Yamin Hu, 2021. "Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities," Nature Climate Change, Nature, vol. 11(12), pages 1084-1089, December.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:12:d:10.1038_s41558-021-01196-2
    DOI: 10.1038/s41558-021-01196-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-021-01196-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-021-01196-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueliang Yang & Kaiping Wang & Yunlu Zhang, 2024. "Spatial Spillover Effects of Urbanization on Ecosystem Services under Altitude Gradient," Land, MDPI, vol. 13(5), pages 1-20, May.
    2. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:12:d:10.1038_s41558-021-01196-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.