IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i9d10.1038_s41558-020-0830-0.html
   My bibliography  Save this article

Net benefits to US soy and maize yields from intensifying hourly rainfall

Author

Listed:
  • Corey Lesk

    (Lamont–Doherty Earth Observatory
    Columbia University)

  • Ethan Coffel

    (Dartmouth College
    Dartmouth College)

  • Radley Horton

    (Lamont–Doherty Earth Observatory)

Abstract

Many varieties of short-duration extreme weather pose a threat to global crop production, food security and farmer livelihoods1–4. Hourly exposure to extreme heat has been identified as detrimental to crop yields1,5; however, the influence of hourly rainfall intensity and extremes on yields remains unknown4,6,7. Here, we show that while maize and soy yields in the United States are severely damaged by the rarest hourly rainfall extremes (≥50 mm hr−1), they benefit from heavy rainfall up to 20 mm hr−1, roughly the heaviest downpour of the year on average. We also find that yields decrease in response to drizzle (0.1–1 mm hr−1), revealing a complex pattern of yield sensitivity across the range of hourly intensities. We project that crop yields will benefit by ~1–3% on average due to projected future rainfall intensification under climate warming8,9, slightly offsetting the larger expected yield declines from excess heat, with the benefits of more heavy rainfall hours outweighing the damages due to additional extremes. Our results challenge the view that an increasing frequency of high-intensity rainfall events poses an unequivocal risk to crop yields2,7,10 and provide insights that may guide adaptive crop management and improve crop models.

Suggested Citation

  • Corey Lesk & Ethan Coffel & Radley Horton, 2020. "Net benefits to US soy and maize yields from intensifying hourly rainfall," Nature Climate Change, Nature, vol. 10(9), pages 819-822, September.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:9:d:10.1038_s41558-020-0830-0
    DOI: 10.1038/s41558-020-0830-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0830-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0830-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irmak, S. & Sandhu, R. & Kukal, M.S., 2022. "Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Jarrett, Uchechukwu & Miller, Steve & Mohtadi, Hamid, 2023. "Dry spells and global crop production: A multi-stressor and multi-timescale analysis," Ecological Economics, Elsevier, vol. 203(C).
    3. Magdalena Cornejo & Nicolás Merener & Ezequiel Merovich, 2024. "Extreme Dry Spells and Larger Storms in the U.S. Midwest Raise Crop Prices," Working Papers 303, Red Nacional de Investigadores en Economía (RedNIE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:9:d:10.1038_s41558-020-0830-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.